This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgulm2.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| itgulm2.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| itgulm2.l | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ 𝐿1 ) | ||
| itgulm2.u | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ( ⇝𝑢 ‘ 𝑆 ) ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| itgulm2.s | ⊢ ( 𝜑 → ( vol ‘ 𝑆 ) ∈ ℝ ) | ||
| Assertion | itgulm2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ∈ 𝐿1 ∧ ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 𝐴 d 𝑥 ) ⇝ ∫ 𝑆 𝐵 d 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgulm2.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | itgulm2.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | itgulm2.l | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ 𝐿1 ) | |
| 4 | itgulm2.u | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ( ⇝𝑢 ‘ 𝑆 ) ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 5 | itgulm2.s | ⊢ ( 𝜑 → ( vol ‘ 𝑆 ) ∈ ℝ ) | |
| 6 | 3 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) : 𝑍 ⟶ 𝐿1 ) |
| 7 | 1 2 6 4 5 | iblulm | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 8 | 1 2 6 4 5 | itgulm | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑧 ) d 𝑧 ) ⇝ ∫ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑧 ) d 𝑧 ) |
| 9 | nfcv | ⊢ Ⅎ 𝑘 𝑆 | |
| 10 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) | |
| 11 | nfcv | ⊢ Ⅎ 𝑘 𝑧 | |
| 12 | 10 11 | nffv | ⊢ Ⅎ 𝑘 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑧 ) |
| 13 | 9 12 | nfitg | ⊢ Ⅎ 𝑘 ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑧 ) d 𝑧 |
| 14 | nfcv | ⊢ Ⅎ 𝑛 ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 | |
| 15 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑧 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 16 | nfcv | ⊢ Ⅎ 𝑥 𝑍 | |
| 17 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) | |
| 18 | 16 17 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) |
| 19 | nfcv | ⊢ Ⅎ 𝑥 𝑛 | |
| 20 | 18 19 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) |
| 21 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 22 | 20 21 | nffv | ⊢ Ⅎ 𝑥 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑧 ) |
| 23 | nfcv | ⊢ Ⅎ 𝑧 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑥 ) | |
| 24 | 15 22 23 | cbvitg | ⊢ ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑧 ) d 𝑧 = ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 |
| 25 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ) | |
| 26 | 25 | fveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑥 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑛 = 𝑘 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑥 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 28 | 27 | itgeq2dv | ⊢ ( 𝑛 = 𝑘 → ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 = ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) |
| 29 | 24 28 | eqtrid | ⊢ ( 𝑛 = 𝑘 → ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑧 ) d 𝑧 = ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) |
| 30 | 13 14 29 | cbvmpt | ⊢ ( 𝑛 ∈ 𝑍 ↦ ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑧 ) d 𝑧 ) = ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) |
| 31 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑘 ∈ 𝑍 ) | |
| 32 | ulmscl | ⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ( ⇝𝑢 ‘ 𝑆 ) ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) → 𝑆 ∈ V ) | |
| 33 | mptexg | ⊢ ( 𝑆 ∈ V → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ V ) | |
| 34 | 4 32 33 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ V ) |
| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ V ) |
| 36 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) | |
| 37 | 36 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝑍 ∧ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ V ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) |
| 38 | 31 35 37 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) |
| 39 | 38 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ‘ 𝑥 ) ) |
| 40 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 41 | 34 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ V ) |
| 42 | 36 | fnmpt | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ V → ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) Fn 𝑍 ) |
| 43 | 41 42 | syl | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) Fn 𝑍 ) |
| 44 | ulmf2 | ⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) Fn 𝑍 ∧ ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ( ⇝𝑢 ‘ 𝑆 ) ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) → ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 45 | 43 4 44 | syl2anc | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 46 | 45 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 47 | elmapi | ⊢ ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℂ ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℂ ) |
| 49 | 48 | fvmptelcdm | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℂ ) |
| 50 | eqid | ⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) | |
| 51 | 50 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 52 | 40 49 51 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 53 | 39 52 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ‘ 𝑥 ) = 𝐴 ) |
| 54 | 53 | itgeq2dv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 = ∫ 𝑆 𝐴 d 𝑥 ) |
| 55 | 54 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) = ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 𝐴 d 𝑥 ) ) |
| 56 | 30 55 | eqtrid | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ∫ 𝑆 ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ‘ 𝑛 ) ‘ 𝑧 ) d 𝑧 ) = ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 𝐴 d 𝑥 ) ) |
| 57 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑥 ) ) | |
| 58 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑧 ) | |
| 59 | nfcv | ⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑥 ) | |
| 60 | 57 58 59 | cbvitg | ⊢ ∫ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑧 ) d 𝑧 = ∫ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑥 ) d 𝑥 |
| 61 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 62 | ulmcl | ⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) ( ⇝𝑢 ‘ 𝑆 ) ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℂ ) | |
| 63 | 4 62 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℂ ) |
| 64 | 63 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) |
| 65 | eqid | ⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) | |
| 66 | 65 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 67 | 61 64 66 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 68 | 67 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑥 ) d 𝑥 = ∫ 𝑆 𝐵 d 𝑥 ) |
| 69 | 60 68 | eqtrid | ⊢ ( 𝜑 → ∫ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ‘ 𝑧 ) d 𝑧 = ∫ 𝑆 𝐵 d 𝑥 ) |
| 70 | 8 56 69 | 3brtr3d | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 𝐴 d 𝑥 ) ⇝ ∫ 𝑆 𝐵 d 𝑥 ) |
| 71 | 7 70 | jca | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ∈ 𝐿1 ∧ ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 𝐴 d 𝑥 ) ⇝ ∫ 𝑆 𝐵 d 𝑥 ) ) |