This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgle.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| itgle.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| itgle.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| itgle.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | ||
| itgle.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) | ||
| Assertion | itgle | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ≤ ∫ 𝐴 𝐶 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgle.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 2 | itgle.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 3 | itgle.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 4 | itgle.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | |
| 5 | itgle.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) | |
| 6 | 3 | iblrelem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ∈ ℝ ) ) ) |
| 7 | 1 6 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ∈ ℝ ) ) |
| 8 | 7 | simp2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ) |
| 9 | 4 | iblrelem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ∈ ℝ ) ) ) |
| 10 | 2 9 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ∈ ℝ ) ) |
| 11 | 10 | simp3d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ∈ ℝ ) |
| 12 | 10 | simp2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ) |
| 13 | 7 | simp3d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ∈ ℝ ) |
| 14 | 3 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 15 | 14 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 16 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ 𝐵 ) | |
| 17 | elxrge0 | ⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) | |
| 18 | 15 16 17 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 19 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 20 | 19 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 21 | 18 20 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 22 | 21 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 23 | 4 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ ) |
| 24 | 23 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
| 25 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 0 ≤ 𝐶 ) | |
| 26 | elxrge0 | ⊢ ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) | |
| 27 | 24 25 26 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 28 | 19 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 29 | 27 28 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 30 | 29 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 31 | 0re | ⊢ 0 ∈ ℝ | |
| 32 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) | |
| 33 | 31 4 32 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 34 | ifcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) | |
| 35 | 4 31 34 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 36 | max2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) | |
| 37 | 31 4 36 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 38 | 3 4 35 5 37 | letrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 39 | maxle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∧ 𝐵 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) | |
| 40 | 31 3 35 39 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∧ 𝐵 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 41 | 33 38 40 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 42 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) | |
| 43 | 42 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 44 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) | |
| 45 | 44 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 46 | 41 43 45 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) |
| 47 | 46 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) ) |
| 48 | 0le0 | ⊢ 0 ≤ 0 | |
| 49 | 48 | a1i | ⊢ ( ¬ 𝑥 ∈ 𝐴 → 0 ≤ 0 ) |
| 50 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) = 0 ) | |
| 51 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) = 0 ) | |
| 52 | 49 50 51 | 3brtr4d | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) |
| 53 | 47 52 | pm2.61d1 | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) |
| 54 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) | |
| 55 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) | |
| 56 | 53 54 55 | 3brtr4g | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
| 57 | 56 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
| 58 | reex | ⊢ ℝ ∈ V | |
| 59 | 58 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 60 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) | |
| 61 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) | |
| 62 | 59 21 29 60 61 | ofrfval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
| 63 | 57 62 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
| 64 | itg2le | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) | |
| 65 | 22 30 63 64 | syl3anc | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) |
| 66 | 4 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℝ ) |
| 67 | 66 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → - 𝐶 ∈ ℝ ) |
| 68 | 67 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → - 𝐶 ∈ ℝ* ) |
| 69 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → 0 ≤ - 𝐶 ) | |
| 70 | elxrge0 | ⊢ ( - 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( - 𝐶 ∈ ℝ* ∧ 0 ≤ - 𝐶 ) ) | |
| 71 | 68 69 70 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → - 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 72 | 19 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 73 | 71 72 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 74 | 73 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 75 | 3 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 76 | 75 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ℝ ) |
| 77 | 76 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ℝ* ) |
| 78 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ - 𝐵 ) | |
| 79 | elxrge0 | ⊢ ( - 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( - 𝐵 ∈ ℝ* ∧ 0 ≤ - 𝐵 ) ) | |
| 80 | 77 78 79 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 81 | 19 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 82 | 80 81 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 83 | 82 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 84 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) | |
| 85 | 31 75 84 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 86 | ifcl | ⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) | |
| 87 | 75 31 86 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
| 88 | 3 4 | lenegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝐶 ↔ - 𝐶 ≤ - 𝐵 ) ) |
| 89 | 5 88 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ≤ - 𝐵 ) |
| 90 | max2 | ⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → - 𝐵 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) | |
| 91 | 31 75 90 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 92 | 66 75 87 89 91 | letrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 93 | maxle | ⊢ ( ( 0 ∈ ℝ ∧ - 𝐶 ∈ ℝ ∧ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∧ - 𝐶 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) | |
| 94 | 31 66 87 93 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∧ - 𝐶 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
| 95 | 85 92 94 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 96 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) | |
| 97 | 96 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 98 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) | |
| 99 | 98 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 100 | 95 97 99 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) |
| 101 | 100 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) ) |
| 102 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) = 0 ) | |
| 103 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) = 0 ) | |
| 104 | 49 102 103 | 3brtr4d | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) |
| 105 | 101 104 | pm2.61d1 | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) |
| 106 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) | |
| 107 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) | |
| 108 | 105 106 107 | 3brtr4g | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) |
| 109 | 108 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) |
| 110 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) | |
| 111 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) | |
| 112 | 59 73 82 110 111 | ofrfval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) |
| 113 | 109 112 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) |
| 114 | itg2le | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) | |
| 115 | 74 83 113 114 | syl3anc | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) |
| 116 | 8 11 12 13 65 115 | le2subd | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) ≤ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ) ) |
| 117 | 3 1 | itgrevallem1 | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) ) |
| 118 | 4 2 | itgrevallem1 | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ) ) |
| 119 | 116 117 118 | 3brtr4d | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ≤ ∫ 𝐴 𝐶 d 𝑥 ) |