This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud . (Contributed by Alexander van der Vekens, 26-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3biantd.1 | ⊢ ( 𝜑 → 𝜃 ) | |
| Assertion | 3biant1d | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜓 ) ↔ ( 𝜃 ∧ 𝜒 ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3biantd.1 | ⊢ ( 𝜑 → 𝜃 ) | |
| 2 | 1 | biantrurd | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜓 ) ↔ ( 𝜃 ∧ ( 𝜒 ∧ 𝜓 ) ) ) ) |
| 3 | 3anass | ⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜓 ) ↔ ( 𝜃 ∧ ( 𝜒 ∧ 𝜓 ) ) ) | |
| 4 | 2 3 | bitr4di | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜓 ) ↔ ( 𝜃 ∧ 𝜒 ∧ 𝜓 ) ) ) |