This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ditgeq1 | ⊢ ( 𝐴 = 𝐵 → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶 ) ) | |
| 2 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,) 𝐶 ) = ( 𝐵 (,) 𝐶 ) ) | |
| 3 | itgeq1 | ⊢ ( ( 𝐴 (,) 𝐶 ) = ( 𝐵 (,) 𝐶 ) → ∫ ( 𝐴 (,) 𝐶 ) 𝐷 d 𝑥 = ∫ ( 𝐵 (,) 𝐶 ) 𝐷 d 𝑥 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 = 𝐵 → ∫ ( 𝐴 (,) 𝐶 ) 𝐷 d 𝑥 = ∫ ( 𝐵 (,) 𝐶 ) 𝐷 d 𝑥 ) |
| 5 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 (,) 𝐴 ) = ( 𝐶 (,) 𝐵 ) ) | |
| 6 | itgeq1 | ⊢ ( ( 𝐶 (,) 𝐴 ) = ( 𝐶 (,) 𝐵 ) → ∫ ( 𝐶 (,) 𝐴 ) 𝐷 d 𝑥 = ∫ ( 𝐶 (,) 𝐵 ) 𝐷 d 𝑥 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 = 𝐵 → ∫ ( 𝐶 (,) 𝐴 ) 𝐷 d 𝑥 = ∫ ( 𝐶 (,) 𝐵 ) 𝐷 d 𝑥 ) |
| 8 | 7 | negeqd | ⊢ ( 𝐴 = 𝐵 → - ∫ ( 𝐶 (,) 𝐴 ) 𝐷 d 𝑥 = - ∫ ( 𝐶 (,) 𝐵 ) 𝐷 d 𝑥 ) |
| 9 | 1 4 8 | ifbieq12d | ⊢ ( 𝐴 = 𝐵 → if ( 𝐴 ≤ 𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐷 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐷 d 𝑥 ) = if ( 𝐵 ≤ 𝐶 , ∫ ( 𝐵 (,) 𝐶 ) 𝐷 d 𝑥 , - ∫ ( 𝐶 (,) 𝐵 ) 𝐷 d 𝑥 ) ) |
| 10 | df-ditg | ⊢ ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = if ( 𝐴 ≤ 𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐷 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐷 d 𝑥 ) | |
| 11 | df-ditg | ⊢ ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 = if ( 𝐵 ≤ 𝐶 , ∫ ( 𝐵 (,) 𝐶 ) 𝐷 d 𝑥 , - ∫ ( 𝐶 (,) 𝐵 ) 𝐷 d 𝑥 ) | |
| 12 | 9 10 11 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) |