This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer an integral using S.1 to an equivalent integral using S. . (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itgitg1 | ⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫1 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 2 | 1 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 3 | 1 | feqmptd | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 4 | i1fibl | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ 𝐿1 ) | |
| 5 | 3 4 | eqeltrrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 6 | 2 5 | itgreval | ⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫ ℝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 − ∫ ℝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 ) ) |
| 7 | 0re | ⊢ 0 ∈ ℝ | |
| 8 | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) | |
| 9 | 2 7 8 | sylancl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
| 10 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 11 | 7 2 10 | sylancr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 12 | id | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ dom ∫1 ) | |
| 13 | 3 12 | eqeltrrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ dom ∫1 ) |
| 14 | 13 | i1fposd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 15 | i1fibl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐿1 ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐿1 ) |
| 17 | 9 11 16 | itgitg2 | ⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 18 | 11 | ralrimiva | ⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 19 | reex | ⊢ ℝ ∈ V | |
| 20 | 19 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ℝ ∈ V ) |
| 21 | 7 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
| 22 | fconstmpt | ⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) | |
| 23 | 22 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
| 24 | eqidd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 25 | 20 21 9 23 24 | ofrfval2 | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 26 | 18 25 | mpbird | ⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 27 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 28 | 27 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ℝ ⊆ ℂ ) |
| 29 | 9 | fmpttd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ ℝ ) |
| 30 | 29 | ffnd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
| 31 | 28 30 | 0pledm | ⊢ ( 𝐹 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 32 | 26 31 | mpbird | ⊢ ( 𝐹 ∈ dom ∫1 → 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 33 | itg2itg1 | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) | |
| 34 | 14 32 33 | syl2anc | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 35 | 17 34 | eqtrd | ⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 36 | 2 | renegcld | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 37 | ifcl | ⊢ ( ( - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) | |
| 38 | 36 7 37 | sylancl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
| 39 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 40 | 7 36 39 | sylancr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 41 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 42 | 41 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → - 1 ∈ ℝ ) |
| 43 | fconstmpt | ⊢ ( ℝ × { - 1 } ) = ( 𝑥 ∈ ℝ ↦ - 1 ) | |
| 44 | 43 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { - 1 } ) = ( 𝑥 ∈ ℝ ↦ - 1 ) ) |
| 45 | 20 42 2 44 3 | offval2 | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ ℝ ↦ ( - 1 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 46 | 2 | recnd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 47 | 46 | mulm1d | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( - 1 · ( 𝐹 ‘ 𝑥 ) ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 48 | 47 | mpteq2dva | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( - 1 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ) |
| 49 | 45 48 | eqtrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ) |
| 50 | 41 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → - 1 ∈ ℝ ) |
| 51 | 12 50 | i1fmulc | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) ∈ dom ∫1 ) |
| 52 | 49 51 | eqeltrrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ∈ dom ∫1 ) |
| 53 | 52 | i1fposd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 54 | i1fibl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐿1 ) | |
| 55 | 53 54 | syl | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐿1 ) |
| 56 | 38 40 55 | itgitg2 | ⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 57 | 40 | ralrimiva | ⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 58 | eqidd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 59 | 20 21 38 23 58 | ofrfval2 | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 60 | 57 59 | mpbird | ⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 61 | 38 | fmpttd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ ℝ ) |
| 62 | 61 | ffnd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
| 63 | 28 62 | 0pledm | ⊢ ( 𝐹 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 64 | 60 63 | mpbird | ⊢ ( 𝐹 ∈ dom ∫1 → 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 65 | itg2itg1 | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) | |
| 66 | 53 64 65 | syl2anc | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 67 | 56 66 | eqtrd | ⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 68 | 35 67 | oveq12d | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫ ℝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 − ∫ ℝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 ) = ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) − ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 69 | itg1sub | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) → ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) − ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ) | |
| 70 | 14 53 69 | syl2anc | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) − ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 71 | 68 70 | eqtr4d | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫ ℝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 − ∫ ℝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 ) = ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 72 | max0sub | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 73 | 2 72 | syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 74 | 73 | mpteq2dva | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 75 | 20 9 38 24 58 | offval2 | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 76 | 74 75 3 | 3eqtr4d | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = 𝐹 ) |
| 77 | 76 | fveq2d | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( ∫1 ‘ 𝐹 ) ) |
| 78 | 6 71 77 | 3eqtrd | ⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫1 ‘ 𝐹 ) ) |