This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1sub | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ∫1 ‘ ( 𝐹 ∘f − 𝐺 ) ) = ( ( ∫1 ‘ 𝐹 ) − ( ∫1 ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐹 ∈ dom ∫1 ) | |
| 2 | simpr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐺 ∈ dom ∫1 ) | |
| 3 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 4 | 3 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → - 1 ∈ ℝ ) |
| 5 | 2 4 | i1fmulc | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ∈ dom ∫1 ) |
| 6 | 1 5 | itg1add | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ∫1 ‘ ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) ) = ( ( ∫1 ‘ 𝐹 ) + ( ∫1 ‘ ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) ) ) |
| 7 | 2 4 | itg1mulc | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ∫1 ‘ ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) = ( - 1 · ( ∫1 ‘ 𝐺 ) ) ) |
| 8 | itg1cl | ⊢ ( 𝐺 ∈ dom ∫1 → ( ∫1 ‘ 𝐺 ) ∈ ℝ ) | |
| 9 | 8 | recnd | ⊢ ( 𝐺 ∈ dom ∫1 → ( ∫1 ‘ 𝐺 ) ∈ ℂ ) |
| 10 | 2 9 | syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ∫1 ‘ 𝐺 ) ∈ ℂ ) |
| 11 | 10 | mulm1d | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( - 1 · ( ∫1 ‘ 𝐺 ) ) = - ( ∫1 ‘ 𝐺 ) ) |
| 12 | 7 11 | eqtrd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ∫1 ‘ ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) = - ( ∫1 ‘ 𝐺 ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ( ∫1 ‘ 𝐹 ) + ( ∫1 ‘ ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) ) = ( ( ∫1 ‘ 𝐹 ) + - ( ∫1 ‘ 𝐺 ) ) ) |
| 14 | 6 13 | eqtrd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ∫1 ‘ ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) ) = ( ( ∫1 ‘ 𝐹 ) + - ( ∫1 ‘ 𝐺 ) ) ) |
| 15 | reex | ⊢ ℝ ∈ V | |
| 16 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 17 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 18 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ℝ ⟶ ℂ ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℂ ) |
| 20 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 21 | fss | ⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ℝ ⟶ ℂ ) | |
| 22 | 20 17 21 | sylancl | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℂ ) |
| 23 | ofnegsub | ⊢ ( ( ℝ ∈ V ∧ 𝐹 : ℝ ⟶ ℂ ∧ 𝐺 : ℝ ⟶ ℂ ) → ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) | |
| 24 | 15 19 22 23 | mp3an3an | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ∫1 ‘ ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) ) = ( ∫1 ‘ ( 𝐹 ∘f − 𝐺 ) ) ) |
| 26 | itg1cl | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) | |
| 27 | 26 | recnd | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) ∈ ℂ ) |
| 28 | negsub | ⊢ ( ( ( ∫1 ‘ 𝐹 ) ∈ ℂ ∧ ( ∫1 ‘ 𝐺 ) ∈ ℂ ) → ( ( ∫1 ‘ 𝐹 ) + - ( ∫1 ‘ 𝐺 ) ) = ( ( ∫1 ‘ 𝐹 ) − ( ∫1 ‘ 𝐺 ) ) ) | |
| 29 | 27 9 28 | syl2an | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ( ∫1 ‘ 𝐹 ) + - ( ∫1 ‘ 𝐺 ) ) = ( ( ∫1 ‘ 𝐹 ) − ( ∫1 ‘ 𝐺 ) ) ) |
| 30 | 14 25 29 | 3eqtr3d | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ∫1 ‘ ( 𝐹 ∘f − 𝐺 ) ) = ( ( ∫1 ‘ 𝐹 ) − ( ∫1 ‘ 𝐺 ) ) ) |