This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction form of i1fposd . (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1fposd.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ dom ∫1 ) | |
| Assertion | i1fposd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) ∈ dom ∫1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fposd.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ dom ∫1 ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 0 | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 4 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) | |
| 5 | 2 3 4 | nfbr | ⊢ Ⅎ 𝑥 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) |
| 6 | 5 4 2 | nfif | ⊢ Ⅎ 𝑥 if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) |
| 7 | nfcv | ⊢ Ⅎ 𝑦 if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , 0 ) | |
| 8 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) ) | |
| 9 | 8 | breq2d | ⊢ ( 𝑦 = 𝑥 → ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) ↔ 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) ) ) |
| 10 | 9 8 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) = if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , 0 ) ) |
| 11 | 6 7 10 | cbvmpt | ⊢ ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , 0 ) ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 13 | i1ff | ⊢ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) : ℝ ⟶ ℝ ) | |
| 14 | 1 13 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) : ℝ ⟶ ℝ ) |
| 15 | 14 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 16 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ 𝐴 ) = ( 𝑥 ∈ ℝ ↦ 𝐴 ) | |
| 17 | 16 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 18 | 12 15 17 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 19 | 18 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) ↔ 0 ≤ 𝐴 ) ) |
| 20 | 19 18 | ifbieq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , 0 ) = if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) |
| 21 | 20 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) ) |
| 22 | 11 21 | eqtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) ) |
| 23 | eqid | ⊢ ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) | |
| 24 | 23 | i1fpos | ⊢ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ dom ∫1 → ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) ∈ dom ∫1 ) |
| 25 | 1 24 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) ∈ dom ∫1 ) |
| 26 | 22 25 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) ∈ dom ∫1 ) |