This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1fibl | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 2 | 1 | feqmptd | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 | i1fmbf | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn ) | |
| 4 | 2 3 | eqeltrrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
| 5 | simpr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 6 | 5 | biantrurd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 7 | 6 | ifbid | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 8 | 7 | mpteq2dva | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 11 | 10 | i1fpos | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 12 | 0re | ⊢ 0 ∈ ℝ | |
| 13 | 1 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 14 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 16 | 15 | ralrimiva | ⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 17 | reex | ⊢ ℝ ∈ V | |
| 18 | 17 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ℝ ∈ V ) |
| 19 | 12 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
| 20 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 21 | c0ex | ⊢ 0 ∈ V | |
| 22 | 20 21 | ifex | ⊢ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 23 | 22 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 24 | fconstmpt | ⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) | |
| 25 | 24 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
| 26 | eqidd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 27 | 18 19 23 25 26 | ofrfval2 | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 28 | 16 27 | mpbird | ⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 29 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 30 | 29 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ℝ ⊆ ℂ ) |
| 31 | 22 10 | fnmpti | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ |
| 32 | 31 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
| 33 | 30 32 | 0pledm | ⊢ ( 𝐹 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 34 | 28 33 | mpbird | ⊢ ( 𝐹 ∈ dom ∫1 → 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 35 | itg2itg1 | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) | |
| 36 | 11 34 35 | syl2anc | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 37 | 9 36 | eqtr3d | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 38 | itg1cl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) | |
| 39 | 11 38 | syl | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 40 | 37 39 | eqeltrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 41 | 5 | biantrurd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 42 | 41 | ifbid | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 43 | 42 | mpteq2dva | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 44 | 43 | fveq2d | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 45 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 46 | 45 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → - 1 ∈ ℝ ) |
| 47 | fconstmpt | ⊢ ( ℝ × { - 1 } ) = ( 𝑥 ∈ ℝ ↦ - 1 ) | |
| 48 | 47 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { - 1 } ) = ( 𝑥 ∈ ℝ ↦ - 1 ) ) |
| 49 | 18 46 13 48 2 | offval2 | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ ℝ ↦ ( - 1 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 50 | 13 | recnd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 51 | 50 | mulm1d | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( - 1 · ( 𝐹 ‘ 𝑥 ) ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 52 | 51 | mpteq2dva | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( - 1 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ) |
| 53 | 49 52 | eqtrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ) |
| 54 | id | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ dom ∫1 ) | |
| 55 | 45 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → - 1 ∈ ℝ ) |
| 56 | 54 55 | i1fmulc | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) ∈ dom ∫1 ) |
| 57 | 53 56 | eqeltrrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ∈ dom ∫1 ) |
| 58 | 57 | i1fposd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 59 | 13 | renegcld | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 60 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 61 | 12 59 60 | sylancr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 62 | 61 | ralrimiva | ⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 63 | negex | ⊢ - ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 64 | 63 21 | ifex | ⊢ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 65 | 64 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 66 | eqidd | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 67 | 18 19 65 25 66 | ofrfval2 | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 68 | 62 67 | mpbird | ⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 69 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 70 | 64 69 | fnmpti | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ |
| 71 | 70 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
| 72 | 30 71 | 0pledm | ⊢ ( 𝐹 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 73 | 68 72 | mpbird | ⊢ ( 𝐹 ∈ dom ∫1 → 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 74 | itg2itg1 | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) | |
| 75 | 58 73 74 | syl2anc | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 76 | 44 75 | eqtr3d | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 77 | itg1cl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) | |
| 78 | 58 77 | syl | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 79 | 76 78 | eqeltrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 80 | 13 | iblrelem | ⊢ ( 𝐹 ∈ dom ∫1 → ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 81 | 4 40 79 80 | mpbir3and | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 82 | 2 81 | eqeltrd | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ 𝐿1 ) |