This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg10a.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| itg10a.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| itg10a.3 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | ||
| itg1ge0a.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) | ||
| Assertion | itg1ge0a | ⊢ ( 𝜑 → 0 ≤ ( ∫1 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10a.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | itg10a.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 3 | itg10a.3 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | |
| 4 | itg1ge0a.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) | |
| 5 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 7 | difss | ⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 | |
| 8 | ssfi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
| 10 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 11 | 1 10 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 12 | 11 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 13 | 12 | ssdifssd | ⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ ) |
| 14 | 13 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℝ ) |
| 15 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) | |
| 16 | 1 15 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) |
| 17 | 14 16 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ∈ ℝ ) |
| 18 | 0le0 | ⊢ 0 ≤ 0 | |
| 19 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) | |
| 20 | 1 19 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) |
| 21 | mblvol | ⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 24 | 11 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 25 | fniniseg | ⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 28 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → 𝑥 ∈ ℝ ) | |
| 29 | eldif | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 30 | 4 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 32 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑘 ) | |
| 33 | 32 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 0 ≤ 𝑘 ) ) |
| 34 | 0red | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → 0 ∈ ℝ ) | |
| 35 | 14 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → 𝑘 ∈ ℝ ) |
| 36 | 34 35 | lenltd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 0 ≤ 𝑘 ↔ ¬ 𝑘 < 0 ) ) |
| 37 | 33 36 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ¬ 𝑘 < 0 ) ) |
| 38 | 31 37 | sylibd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑘 < 0 ) ) |
| 39 | 29 38 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴 ) → ¬ 𝑘 < 0 ) ) |
| 40 | 28 39 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ 𝑘 < 0 ) ) |
| 41 | 40 | con4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 𝑘 < 0 → 𝑥 ∈ 𝐴 ) ) |
| 42 | 41 | impancom | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) → 𝑥 ∈ 𝐴 ) ) |
| 43 | 27 42 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) → 𝑥 ∈ 𝐴 ) ) |
| 44 | 43 | ssrdv | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ 𝐴 ) |
| 45 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → 𝐴 ⊆ ℝ ) |
| 46 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol* ‘ 𝐴 ) = 0 ) |
| 47 | ovolssnul | ⊢ ( ( ( ◡ 𝐹 “ { 𝑘 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = 0 ) | |
| 48 | 44 45 46 47 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = 0 ) |
| 49 | 23 48 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = 0 ) |
| 50 | 49 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) = ( 𝑘 · 0 ) ) |
| 51 | 14 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℂ ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → 𝑘 ∈ ℂ ) |
| 53 | 52 | mul01d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑘 · 0 ) = 0 ) |
| 54 | 50 53 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) = 0 ) |
| 55 | 18 54 | breqtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑘 < 0 ) → 0 ≤ ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 56 | 14 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 𝑘 ∈ ℝ ) |
| 57 | 16 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) |
| 58 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ 𝑘 ) | |
| 59 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) |
| 60 | mblss | ⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ) |
| 62 | ovolge0 | ⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) | |
| 63 | 61 62 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 64 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 65 | 63 64 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 66 | 56 57 58 65 | mulge0d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 0 ≤ 𝑘 ) → 0 ≤ ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 67 | 0red | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ∈ ℝ ) | |
| 68 | 55 66 14 67 | ltlecasei | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ≤ ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 69 | 9 17 68 | fsumge0 | ⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 70 | itg1val | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) | |
| 71 | 1 70 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 72 | 69 71 | breqtrrd | ⊢ ( 𝜑 → 0 ≤ ( ∫1 ‘ 𝐹 ) ) |