This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg10a.1 | |- ( ph -> F e. dom S.1 ) |
|
| itg10a.2 | |- ( ph -> A C_ RR ) |
||
| itg10a.3 | |- ( ph -> ( vol* ` A ) = 0 ) |
||
| itg1ge0a.4 | |- ( ( ph /\ x e. ( RR \ A ) ) -> 0 <_ ( F ` x ) ) |
||
| Assertion | itg1ge0a | |- ( ph -> 0 <_ ( S.1 ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10a.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | itg10a.2 | |- ( ph -> A C_ RR ) |
|
| 3 | itg10a.3 | |- ( ph -> ( vol* ` A ) = 0 ) |
|
| 4 | itg1ge0a.4 | |- ( ( ph /\ x e. ( RR \ A ) ) -> 0 <_ ( F ` x ) ) |
|
| 5 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 6 | 1 5 | syl | |- ( ph -> ran F e. Fin ) |
| 7 | difss | |- ( ran F \ { 0 } ) C_ ran F |
|
| 8 | ssfi | |- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
|
| 9 | 6 7 8 | sylancl | |- ( ph -> ( ran F \ { 0 } ) e. Fin ) |
| 10 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 11 | 1 10 | syl | |- ( ph -> F : RR --> RR ) |
| 12 | 11 | frnd | |- ( ph -> ran F C_ RR ) |
| 13 | 12 | ssdifssd | |- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
| 14 | 13 | sselda | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
| 15 | i1fima2sn | |- ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
|
| 16 | 1 15 | sylan | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 17 | 14 16 | remulcld | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. RR ) |
| 18 | 0le0 | |- 0 <_ 0 |
|
| 19 | i1fima | |- ( F e. dom S.1 -> ( `' F " { k } ) e. dom vol ) |
|
| 20 | 1 19 | syl | |- ( ph -> ( `' F " { k } ) e. dom vol ) |
| 21 | mblvol | |- ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
|
| 22 | 20 21 | syl | |- ( ph -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 23 | 22 | ad2antrr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 24 | 11 | ffnd | |- ( ph -> F Fn RR ) |
| 25 | fniniseg | |- ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
|
| 26 | 24 25 | syl | |- ( ph -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
| 27 | 26 | ad2antrr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
| 28 | simprl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> x e. RR ) |
|
| 29 | eldif | |- ( x e. ( RR \ A ) <-> ( x e. RR /\ -. x e. A ) ) |
|
| 30 | 4 | ex | |- ( ph -> ( x e. ( RR \ A ) -> 0 <_ ( F ` x ) ) ) |
| 31 | 30 | ad2antrr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> 0 <_ ( F ` x ) ) ) |
| 32 | simprr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( F ` x ) = k ) |
|
| 33 | 32 | breq2d | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ ( F ` x ) <-> 0 <_ k ) ) |
| 34 | 0red | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> 0 e. RR ) |
|
| 35 | 14 | adantr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> k e. RR ) |
| 36 | 34 35 | lenltd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ k <-> -. k < 0 ) ) |
| 37 | 33 36 | bitrd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ ( F ` x ) <-> -. k < 0 ) ) |
| 38 | 31 37 | sylibd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> -. k < 0 ) ) |
| 39 | 29 38 | biimtrrid | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( ( x e. RR /\ -. x e. A ) -> -. k < 0 ) ) |
| 40 | 28 39 | mpand | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( -. x e. A -> -. k < 0 ) ) |
| 41 | 40 | con4d | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( k < 0 -> x e. A ) ) |
| 42 | 41 | impancom | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( ( x e. RR /\ ( F ` x ) = k ) -> x e. A ) ) |
| 43 | 27 42 | sylbid | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( x e. ( `' F " { k } ) -> x e. A ) ) |
| 44 | 43 | ssrdv | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( `' F " { k } ) C_ A ) |
| 45 | 2 | ad2antrr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> A C_ RR ) |
| 46 | 3 | ad2antrr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol* ` A ) = 0 ) |
| 47 | ovolssnul | |- ( ( ( `' F " { k } ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) |
|
| 48 | 44 45 46 47 | syl3anc | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) |
| 49 | 23 48 | eqtrd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol ` ( `' F " { k } ) ) = 0 ) |
| 50 | 49 | oveq2d | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( k x. 0 ) ) |
| 51 | 14 | recnd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
| 52 | 51 | adantr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> k e. CC ) |
| 53 | 52 | mul01d | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. 0 ) = 0 ) |
| 54 | 50 53 | eqtrd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = 0 ) |
| 55 | 18 54 | breqtrrid | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 56 | 14 | adantr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> k e. RR ) |
| 57 | 16 | adantr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 58 | simpr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ k ) |
|
| 59 | 20 | ad2antrr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( `' F " { k } ) e. dom vol ) |
| 60 | mblss | |- ( ( `' F " { k } ) e. dom vol -> ( `' F " { k } ) C_ RR ) |
|
| 61 | 59 60 | syl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( `' F " { k } ) C_ RR ) |
| 62 | ovolge0 | |- ( ( `' F " { k } ) C_ RR -> 0 <_ ( vol* ` ( `' F " { k } ) ) ) |
|
| 63 | 61 62 | syl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( vol* ` ( `' F " { k } ) ) ) |
| 64 | 22 | ad2antrr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 65 | 63 64 | breqtrrd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( vol ` ( `' F " { k } ) ) ) |
| 66 | 56 57 58 65 | mulge0d | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 67 | 0red | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 0 e. RR ) |
|
| 68 | 55 66 14 67 | ltlecasei | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 69 | 9 17 68 | fsumge0 | |- ( ph -> 0 <_ sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 70 | itg1val | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
|
| 71 | 1 70 | syl | |- ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 72 | 69 71 | breqtrrd | |- ( ph -> 0 <_ ( S.1 ` F ) ) |