This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difprsnss | ⊢ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) ⊆ { 𝐵 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpr | ⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 3 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
| 4 | 3 | notbii | ⊢ ( ¬ 𝑥 ∈ { 𝐴 } ↔ ¬ 𝑥 = 𝐴 ) |
| 5 | biorf | ⊢ ( ¬ 𝑥 = 𝐴 → ( 𝑥 = 𝐵 ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) | |
| 6 | 5 | biimparc | ⊢ ( ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 = 𝐵 ) |
| 7 | 2 4 6 | syl2anb | ⊢ ( ( 𝑥 ∈ { 𝐴 , 𝐵 } ∧ ¬ 𝑥 ∈ { 𝐴 } ) → 𝑥 = 𝐵 ) |
| 8 | eldif | ⊢ ( 𝑥 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) ↔ ( 𝑥 ∈ { 𝐴 , 𝐵 } ∧ ¬ 𝑥 ∈ { 𝐴 } ) ) | |
| 9 | velsn | ⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) | |
| 10 | 7 8 9 | 3imtr4i | ⊢ ( 𝑥 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) → 𝑥 ∈ { 𝐵 } ) |
| 11 | 10 | ssriv | ⊢ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) ⊆ { 𝐵 } |