This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for i1f1 and itg11 . (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1f1.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) | |
| Assertion | i1f1lem | ⊢ ( 𝐹 : ℝ ⟶ { 0 , 1 } ∧ ( 𝐴 ∈ dom vol → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f1.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) | |
| 2 | 1ex | ⊢ 1 ∈ V | |
| 3 | 2 | prid2 | ⊢ 1 ∈ { 0 , 1 } |
| 4 | c0ex | ⊢ 0 ∈ V | |
| 5 | 4 | prid1 | ⊢ 0 ∈ { 0 , 1 } |
| 6 | 3 5 | ifcli | ⊢ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ { 0 , 1 } |
| 7 | 6 | rgenw | ⊢ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ { 0 , 1 } |
| 8 | 1 | fmpt | ⊢ ( ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ { 0 , 1 } ↔ 𝐹 : ℝ ⟶ { 0 , 1 } ) |
| 9 | 7 8 | mpbi | ⊢ 𝐹 : ℝ ⟶ { 0 , 1 } |
| 10 | 6 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ { 0 , 1 } ) |
| 11 | 10 1 | fmptd | ⊢ ( 𝐴 ∈ dom vol → 𝐹 : ℝ ⟶ { 0 , 1 } ) |
| 12 | ffn | ⊢ ( 𝐹 : ℝ ⟶ { 0 , 1 } → 𝐹 Fn ℝ ) | |
| 13 | elpreima | ⊢ ( 𝐹 Fn ℝ → ( 𝑦 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ { 1 } ) ) ) | |
| 14 | 11 12 13 | 3syl | ⊢ ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ { 1 } ) ) ) |
| 15 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 16 | 15 | elsn | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ { 1 } ↔ ( 𝐹 ‘ 𝑦 ) = 1 ) |
| 17 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 18 | 17 | ifbid | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐴 , 1 , 0 ) = if ( 𝑦 ∈ 𝐴 , 1 , 0 ) ) |
| 19 | 2 4 | ifex | ⊢ if ( 𝑦 ∈ 𝐴 , 1 , 0 ) ∈ V |
| 20 | 18 1 19 | fvmpt | ⊢ ( 𝑦 ∈ ℝ → ( 𝐹 ‘ 𝑦 ) = if ( 𝑦 ∈ 𝐴 , 1 , 0 ) ) |
| 21 | 20 | eqeq1d | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ‘ 𝑦 ) = 1 ↔ if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ) ) |
| 22 | 0ne1 | ⊢ 0 ≠ 1 | |
| 23 | iffalse | ⊢ ( ¬ 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 0 ) | |
| 24 | 23 | eqeq1d | ⊢ ( ¬ 𝑦 ∈ 𝐴 → ( if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ↔ 0 = 1 ) ) |
| 25 | 24 | necon3bbid | ⊢ ( ¬ 𝑦 ∈ 𝐴 → ( ¬ if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ↔ 0 ≠ 1 ) ) |
| 26 | 22 25 | mpbiri | ⊢ ( ¬ 𝑦 ∈ 𝐴 → ¬ if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ) |
| 27 | 26 | con4i | ⊢ ( if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 → 𝑦 ∈ 𝐴 ) |
| 28 | iftrue | ⊢ ( 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ) | |
| 29 | 27 28 | impbii | ⊢ ( if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ↔ 𝑦 ∈ 𝐴 ) |
| 30 | 21 29 | bitrdi | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ‘ 𝑦 ) = 1 ↔ 𝑦 ∈ 𝐴 ) ) |
| 31 | 16 30 | bitrid | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ‘ 𝑦 ) ∈ { 1 } ↔ 𝑦 ∈ 𝐴 ) ) |
| 32 | 31 | pm5.32i | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) |
| 33 | 14 32 | bitrdi | ⊢ ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 34 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 35 | 34 | sseld | ⊢ ( 𝐴 ∈ dom vol → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
| 36 | 35 | pm4.71rd | ⊢ ( 𝐴 ∈ dom vol → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 37 | 33 36 | bitr4d | ⊢ ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ 𝑦 ∈ 𝐴 ) ) |
| 38 | 37 | eqrdv | ⊢ ( 𝐴 ∈ dom vol → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) |
| 39 | 9 38 | pm3.2i | ⊢ ( 𝐹 : ℝ ⟶ { 0 , 1 } ∧ ( 𝐴 ∈ dom vol → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) ) |