This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of an induced subgraph of a hypergraph is an edge of the hypergraph connecting vertices of the subgraph. (Contributed by AV, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isubgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isubgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| isubgredg.h | ⊢ 𝐻 = ( 𝐺 ISubGr 𝑆 ) | ||
| isubgredg.i | ⊢ 𝐼 = ( Edg ‘ 𝐻 ) | ||
| Assertion | isubgredg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐾 ∈ 𝐼 ↔ ( 𝐾 ∈ 𝐸 ∧ 𝐾 ⊆ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isubgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | isubgredg.h | ⊢ 𝐻 = ( 𝐺 ISubGr 𝑆 ) | |
| 4 | isubgredg.i | ⊢ 𝐼 = ( Edg ‘ 𝐻 ) | |
| 5 | 3 | fveq2i | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) |
| 6 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 7 | 1 6 | isubgriedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ) |
| 8 | 5 7 | eqtrid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ 𝐻 ) = ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ) |
| 9 | 8 | rneqd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ran ( iEdg ‘ 𝐻 ) = ran ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ) |
| 10 | 9 | eleq2d | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐾 ∈ ran ( iEdg ‘ 𝐻 ) ↔ 𝐾 ∈ ran ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ) ) |
| 11 | 1 6 | uhgrf | ⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 13 | 12 | ffnd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 14 | ssrab2 | ⊢ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ⊆ dom ( iEdg ‘ 𝐺 ) | |
| 15 | 14 | a1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ⊆ dom ( iEdg ‘ 𝐺 ) ) |
| 16 | 13 15 | fnssresd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) Fn { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) |
| 17 | fvelrnb | ⊢ ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) Fn { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } → ( 𝐾 ∈ ran ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ↔ ∃ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐾 ∈ ran ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ↔ ∃ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) |
| 19 | fvres | ⊢ ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } → ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | |
| 20 | 19 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) → ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 21 | 20 | eqeq1d | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) → ( ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = 𝐾 ) ) |
| 22 | fveq2 | ⊢ ( 𝑖 = 𝑥 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | |
| 23 | 22 | sseq1d | ⊢ ( 𝑖 = 𝑥 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ) |
| 24 | 23 | elrab | ⊢ ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ↔ ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ) |
| 25 | 6 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 27 | simpl | ⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 28 | fvelrn | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ran ( iEdg ‘ 𝐺 ) ) | |
| 29 | 26 27 28 | syl2anr | ⊢ ( ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 30 | simpr | ⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) | |
| 31 | 30 | adantr | ⊢ ( ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) |
| 32 | 29 31 | jca | ⊢ ( ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ) |
| 33 | 32 | ex | ⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ) ) |
| 34 | 24 33 | sylbi | ⊢ ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } → ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ) ) |
| 35 | 34 | impcom | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ) |
| 36 | eleq1 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = 𝐾 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ran ( iEdg ‘ 𝐺 ) ↔ 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ) ) | |
| 37 | sseq1 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = 𝐾 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ↔ 𝐾 ⊆ 𝑆 ) ) | |
| 38 | 36 37 | anbi12d | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = 𝐾 → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ↔ ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ) ) |
| 39 | 35 38 | syl5ibcom | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = 𝐾 → ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ) ) |
| 40 | 21 39 | sylbid | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) → ( ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 → ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ) ) |
| 41 | 40 | rexlimdva | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ∃ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 → ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ) ) |
| 42 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 43 | 42 | eqcomi | ⊢ ran ( iEdg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 44 | 43 | eleq2i | ⊢ ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ↔ 𝐾 ∈ ( Edg ‘ 𝐺 ) ) |
| 45 | 6 | edgiedgb | ⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 46 | 44 45 | bitrid | ⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 47 | 25 46 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 49 | simprl | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 50 | simpr | ⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | |
| 51 | 50 | sseq1d | ⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( 𝐾 ⊆ 𝑆 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ) |
| 52 | 51 | biimpcd | ⊢ ( 𝐾 ⊆ 𝑆 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ) |
| 53 | 52 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) ) |
| 54 | 53 | imp | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ) |
| 55 | 49 54 24 | sylanbrc | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) → 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) |
| 56 | simpr | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∧ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) → 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) | |
| 57 | 50 | eqcomd | ⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = 𝐾 ) |
| 58 | 57 | adantl | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = 𝐾 ) |
| 59 | 19 58 | sylan9eqr | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∧ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) → ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) |
| 60 | 56 59 | jca | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∧ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) → ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ∧ ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) |
| 61 | 55 60 | mpdan | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ∧ ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) |
| 62 | 61 | ex | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ∧ ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) ) |
| 63 | 62 | eximdv | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) → ( ∃ 𝑥 ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → ∃ 𝑥 ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ∧ ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) ) |
| 64 | df-rex | ⊢ ( ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | |
| 65 | df-rex | ⊢ ( ∃ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ∧ ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) | |
| 66 | 63 64 65 | 3imtr4g | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝐾 ⊆ 𝑆 ) → ( ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ∃ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) |
| 67 | 66 | ex | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐾 ⊆ 𝑆 → ( ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ∃ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) ) |
| 68 | 67 | com23 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝐾 ⊆ 𝑆 → ∃ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) ) |
| 69 | 48 68 | sylbid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) → ( 𝐾 ⊆ 𝑆 → ∃ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) ) |
| 70 | 69 | impd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) → ∃ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ) ) |
| 71 | 41 70 | impbid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ∃ 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑆 } ) ‘ 𝑥 ) = 𝐾 ↔ ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ) ) |
| 72 | 10 18 71 | 3bitrd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐾 ∈ ran ( iEdg ‘ 𝐻 ) ↔ ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ) ) |
| 73 | edgval | ⊢ ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) | |
| 74 | 4 73 | eqtri | ⊢ 𝐼 = ran ( iEdg ‘ 𝐻 ) |
| 75 | 74 | eleq2i | ⊢ ( 𝐾 ∈ 𝐼 ↔ 𝐾 ∈ ran ( iEdg ‘ 𝐻 ) ) |
| 76 | 2 42 | eqtri | ⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
| 77 | 76 | eleq2i | ⊢ ( 𝐾 ∈ 𝐸 ↔ 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 78 | 77 | anbi1i | ⊢ ( ( 𝐾 ∈ 𝐸 ∧ 𝐾 ⊆ 𝑆 ) ↔ ( 𝐾 ∈ ran ( iEdg ‘ 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ) |
| 79 | 72 75 78 | 3bitr4g | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐾 ∈ 𝐼 ↔ ( 𝐾 ∈ 𝐸 ∧ 𝐾 ⊆ 𝑆 ) ) ) |