This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edges of an induced subgraph. (Contributed by AV, 12-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isubgriedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isubgriedg.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | isubgriedg | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgriedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isubgriedg.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | isisubgr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) = 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |
| 4 | 3 | fveq2d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( iEdg ‘ 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) ) |
| 5 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 6 | 5 | ssex | ⊢ ( 𝑆 ⊆ 𝑉 → 𝑆 ∈ V ) |
| 7 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 8 | 7 | a1i | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → 𝐸 ∈ V ) |
| 9 | 8 | resexd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ∈ V ) |
| 10 | opiedgfv | ⊢ ( ( 𝑆 ∈ V ∧ ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ∈ V ) → ( iEdg ‘ 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) | |
| 11 | 6 9 10 | syl2an2 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 12 | 4 11 | eqtrd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |