This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of an induced subgraph. (Contributed by AV, 12-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isubgrvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | isubgrvtx | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | isisubgr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) = 〈 𝑆 , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |
| 4 | 3 | fveq2d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( Vtx ‘ 〈 𝑆 , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) ) |
| 5 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 6 | 5 | ssex | ⊢ ( 𝑆 ⊆ 𝑉 → 𝑆 ∈ V ) |
| 7 | fvexd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ 𝐺 ) ∈ V ) | |
| 8 | 7 | resexd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ∈ V ) |
| 9 | opvtxfv | ⊢ ( ( 𝑆 ∈ V ∧ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ∈ V ) → ( Vtx ‘ 〈 𝑆 , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) = 𝑆 ) | |
| 10 | 6 8 9 | syl2an2 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ 〈 𝑆 , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) = 𝑆 ) |
| 11 | 4 10 | eqtrd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = 𝑆 ) |