This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of an induced subgraph of a hypergraph is an edge of the hypergraph connecting vertices of the subgraph. (Contributed by AV, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isubgredg.v | |- V = ( Vtx ` G ) |
|
| isubgredg.e | |- E = ( Edg ` G ) |
||
| isubgredg.h | |- H = ( G ISubGr S ) |
||
| isubgredg.i | |- I = ( Edg ` H ) |
||
| Assertion | isubgredg | |- ( ( G e. UHGraph /\ S C_ V ) -> ( K e. I <-> ( K e. E /\ K C_ S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgredg.v | |- V = ( Vtx ` G ) |
|
| 2 | isubgredg.e | |- E = ( Edg ` G ) |
|
| 3 | isubgredg.h | |- H = ( G ISubGr S ) |
|
| 4 | isubgredg.i | |- I = ( Edg ` H ) |
|
| 5 | 3 | fveq2i | |- ( iEdg ` H ) = ( iEdg ` ( G ISubGr S ) ) |
| 6 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 7 | 1 6 | isubgriedg | |- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ) |
| 8 | 5 7 | eqtrid | |- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` H ) = ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ) |
| 9 | 8 | rneqd | |- ( ( G e. UHGraph /\ S C_ V ) -> ran ( iEdg ` H ) = ran ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ) |
| 10 | 9 | eleq2d | |- ( ( G e. UHGraph /\ S C_ V ) -> ( K e. ran ( iEdg ` H ) <-> K e. ran ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ) ) |
| 11 | 1 6 | uhgrf | |- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
| 12 | 11 | adantr | |- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
| 13 | 12 | ffnd | |- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 14 | ssrab2 | |- { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } C_ dom ( iEdg ` G ) |
|
| 15 | 14 | a1i | |- ( ( G e. UHGraph /\ S C_ V ) -> { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } C_ dom ( iEdg ` G ) ) |
| 16 | 13 15 | fnssresd | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) Fn { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) |
| 17 | fvelrnb | |- ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) Fn { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } -> ( K e. ran ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) <-> E. x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) |
|
| 18 | 16 17 | syl | |- ( ( G e. UHGraph /\ S C_ V ) -> ( K e. ran ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) <-> E. x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) |
| 19 | fvres | |- ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } -> ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = ( ( iEdg ` G ) ` x ) ) |
|
| 20 | 19 | adantl | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) -> ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = ( ( iEdg ` G ) ` x ) ) |
| 21 | 20 | eqeq1d | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) -> ( ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K <-> ( ( iEdg ` G ) ` x ) = K ) ) |
| 22 | fveq2 | |- ( i = x -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` x ) ) |
|
| 23 | 22 | sseq1d | |- ( i = x -> ( ( ( iEdg ` G ) ` i ) C_ S <-> ( ( iEdg ` G ) ` x ) C_ S ) ) |
| 24 | 23 | elrab | |- ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } <-> ( x e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) ) |
| 25 | 6 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 26 | 25 | adantr | |- ( ( G e. UHGraph /\ S C_ V ) -> Fun ( iEdg ` G ) ) |
| 27 | simpl | |- ( ( x e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) -> x e. dom ( iEdg ` G ) ) |
|
| 28 | fvelrn | |- ( ( Fun ( iEdg ` G ) /\ x e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` x ) e. ran ( iEdg ` G ) ) |
|
| 29 | 26 27 28 | syl2anr | |- ( ( ( x e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) /\ ( G e. UHGraph /\ S C_ V ) ) -> ( ( iEdg ` G ) ` x ) e. ran ( iEdg ` G ) ) |
| 30 | simpr | |- ( ( x e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) -> ( ( iEdg ` G ) ` x ) C_ S ) |
|
| 31 | 30 | adantr | |- ( ( ( x e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) /\ ( G e. UHGraph /\ S C_ V ) ) -> ( ( iEdg ` G ) ` x ) C_ S ) |
| 32 | 29 31 | jca | |- ( ( ( x e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) /\ ( G e. UHGraph /\ S C_ V ) ) -> ( ( ( iEdg ` G ) ` x ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) ) |
| 33 | 32 | ex | |- ( ( x e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) -> ( ( G e. UHGraph /\ S C_ V ) -> ( ( ( iEdg ` G ) ` x ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) ) ) |
| 34 | 24 33 | sylbi | |- ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } -> ( ( G e. UHGraph /\ S C_ V ) -> ( ( ( iEdg ` G ) ` x ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) ) ) |
| 35 | 34 | impcom | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) -> ( ( ( iEdg ` G ) ` x ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) ) |
| 36 | eleq1 | |- ( ( ( iEdg ` G ) ` x ) = K -> ( ( ( iEdg ` G ) ` x ) e. ran ( iEdg ` G ) <-> K e. ran ( iEdg ` G ) ) ) |
|
| 37 | sseq1 | |- ( ( ( iEdg ` G ) ` x ) = K -> ( ( ( iEdg ` G ) ` x ) C_ S <-> K C_ S ) ) |
|
| 38 | 36 37 | anbi12d | |- ( ( ( iEdg ` G ) ` x ) = K -> ( ( ( ( iEdg ` G ) ` x ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` x ) C_ S ) <-> ( K e. ran ( iEdg ` G ) /\ K C_ S ) ) ) |
| 39 | 35 38 | syl5ibcom | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) -> ( ( ( iEdg ` G ) ` x ) = K -> ( K e. ran ( iEdg ` G ) /\ K C_ S ) ) ) |
| 40 | 21 39 | sylbid | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) -> ( ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K -> ( K e. ran ( iEdg ` G ) /\ K C_ S ) ) ) |
| 41 | 40 | rexlimdva | |- ( ( G e. UHGraph /\ S C_ V ) -> ( E. x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K -> ( K e. ran ( iEdg ` G ) /\ K C_ S ) ) ) |
| 42 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 43 | 42 | eqcomi | |- ran ( iEdg ` G ) = ( Edg ` G ) |
| 44 | 43 | eleq2i | |- ( K e. ran ( iEdg ` G ) <-> K e. ( Edg ` G ) ) |
| 45 | 6 | edgiedgb | |- ( Fun ( iEdg ` G ) -> ( K e. ( Edg ` G ) <-> E. x e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` x ) ) ) |
| 46 | 44 45 | bitrid | |- ( Fun ( iEdg ` G ) -> ( K e. ran ( iEdg ` G ) <-> E. x e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` x ) ) ) |
| 47 | 25 46 | syl | |- ( G e. UHGraph -> ( K e. ran ( iEdg ` G ) <-> E. x e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` x ) ) ) |
| 48 | 47 | adantr | |- ( ( G e. UHGraph /\ S C_ V ) -> ( K e. ran ( iEdg ` G ) <-> E. x e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` x ) ) ) |
| 49 | simprl | |- ( ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) /\ ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) ) -> x e. dom ( iEdg ` G ) ) |
|
| 50 | simpr | |- ( ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) -> K = ( ( iEdg ` G ) ` x ) ) |
|
| 51 | 50 | sseq1d | |- ( ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) -> ( K C_ S <-> ( ( iEdg ` G ) ` x ) C_ S ) ) |
| 52 | 51 | biimpcd | |- ( K C_ S -> ( ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) -> ( ( iEdg ` G ) ` x ) C_ S ) ) |
| 53 | 52 | adantl | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) -> ( ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) -> ( ( iEdg ` G ) ` x ) C_ S ) ) |
| 54 | 53 | imp | |- ( ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) /\ ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) ) -> ( ( iEdg ` G ) ` x ) C_ S ) |
| 55 | 49 54 24 | sylanbrc | |- ( ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) /\ ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) ) -> x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) |
| 56 | simpr | |- ( ( ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) /\ ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) ) /\ x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) -> x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) |
|
| 57 | 50 | eqcomd | |- ( ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) -> ( ( iEdg ` G ) ` x ) = K ) |
| 58 | 57 | adantl | |- ( ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) /\ ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) ) -> ( ( iEdg ` G ) ` x ) = K ) |
| 59 | 19 58 | sylan9eqr | |- ( ( ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) /\ ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) ) /\ x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) -> ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) |
| 60 | 56 59 | jca | |- ( ( ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) /\ ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) ) /\ x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) -> ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } /\ ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) |
| 61 | 55 60 | mpdan | |- ( ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) /\ ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) ) -> ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } /\ ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) |
| 62 | 61 | ex | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) -> ( ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) -> ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } /\ ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) ) |
| 63 | 62 | eximdv | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) -> ( E. x ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) -> E. x ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } /\ ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) ) |
| 64 | df-rex | |- ( E. x e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` x ) <-> E. x ( x e. dom ( iEdg ` G ) /\ K = ( ( iEdg ` G ) ` x ) ) ) |
|
| 65 | df-rex | |- ( E. x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K <-> E. x ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } /\ ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) |
|
| 66 | 63 64 65 | 3imtr4g | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ K C_ S ) -> ( E. x e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` x ) -> E. x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) |
| 67 | 66 | ex | |- ( ( G e. UHGraph /\ S C_ V ) -> ( K C_ S -> ( E. x e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` x ) -> E. x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) ) |
| 68 | 67 | com23 | |- ( ( G e. UHGraph /\ S C_ V ) -> ( E. x e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` x ) -> ( K C_ S -> E. x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) ) |
| 69 | 48 68 | sylbid | |- ( ( G e. UHGraph /\ S C_ V ) -> ( K e. ran ( iEdg ` G ) -> ( K C_ S -> E. x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) ) |
| 70 | 69 | impd | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ( K e. ran ( iEdg ` G ) /\ K C_ S ) -> E. x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K ) ) |
| 71 | 41 70 | impbid | |- ( ( G e. UHGraph /\ S C_ V ) -> ( E. x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ( ( ( iEdg ` G ) |` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) C_ S } ) ` x ) = K <-> ( K e. ran ( iEdg ` G ) /\ K C_ S ) ) ) |
| 72 | 10 18 71 | 3bitrd | |- ( ( G e. UHGraph /\ S C_ V ) -> ( K e. ran ( iEdg ` H ) <-> ( K e. ran ( iEdg ` G ) /\ K C_ S ) ) ) |
| 73 | edgval | |- ( Edg ` H ) = ran ( iEdg ` H ) |
|
| 74 | 4 73 | eqtri | |- I = ran ( iEdg ` H ) |
| 75 | 74 | eleq2i | |- ( K e. I <-> K e. ran ( iEdg ` H ) ) |
| 76 | 2 42 | eqtri | |- E = ran ( iEdg ` G ) |
| 77 | 76 | eleq2i | |- ( K e. E <-> K e. ran ( iEdg ` G ) ) |
| 78 | 77 | anbi1i | |- ( ( K e. E /\ K C_ S ) <-> ( K e. ran ( iEdg ` G ) /\ K C_ S ) ) |
| 79 | 72 75 78 | 3bitr4g | |- ( ( G e. UHGraph /\ S C_ V ) -> ( K e. I <-> ( K e. E /\ K C_ S ) ) ) |