This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpissubg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpissubg.s | ⊢ 𝑆 = ( Base ‘ 𝐻 ) | ||
| Assertion | grpissubg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) → ( ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpissubg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpissubg.s | ⊢ 𝑆 = ( Base ‘ 𝐻 ) | |
| 3 | simpl | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → 𝑆 ⊆ 𝐵 ) | |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝑆 ⊆ 𝐵 ) |
| 5 | 2 | grpbn0 | ⊢ ( 𝐻 ∈ Grp → 𝑆 ≠ ∅ ) |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝑆 ≠ ∅ ) |
| 7 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 8 | mndmgm | ⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Mgm ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mgm ) |
| 10 | grpmnd | ⊢ ( 𝐻 ∈ Grp → 𝐻 ∈ Mnd ) | |
| 11 | mndmgm | ⊢ ( 𝐻 ∈ Mnd → 𝐻 ∈ Mgm ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐻 ∈ Grp → 𝐻 ∈ Mgm ) |
| 13 | 9 12 | anim12i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) → ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝑆 ) → ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ) |
| 16 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) | |
| 17 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝑆 ) → ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) |
| 18 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) | |
| 19 | 18 | anim1i | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) |
| 20 | 1 2 | mgmsscl | ⊢ ( ( ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝑆 ) |
| 21 | 15 17 19 20 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝑆 ) |
| 22 | 21 | ralrimiva | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎 ∈ 𝑆 ) → ∀ 𝑏 ∈ 𝑆 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝑆 ) |
| 23 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) → 𝐺 ∈ Grp ) | |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝐺 ∈ Grp ) |
| 25 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝐻 ∈ Grp ) | |
| 26 | 1 | sseq2i | ⊢ ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 27 | 26 | biimpi | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 30 | ovres | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 32 | oveq | ⊢ ( ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑥 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑥 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) |
| 34 | 33 | eqcomd | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → ( 𝑥 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 35 | 34 | ad2antlr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 36 | 31 35 | eqtr3d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 37 | 36 | ralrimivva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 38 | 24 25 2 29 37 | grpinvssd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ( 𝑎 ∈ 𝑆 → ( ( invg ‘ 𝐻 ) ‘ 𝑎 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
| 39 | 38 | imp | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎 ∈ 𝑆 ) → ( ( invg ‘ 𝐻 ) ‘ 𝑎 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) |
| 40 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 41 | 2 40 | grpinvcl | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑎 ∈ 𝑆 ) → ( ( invg ‘ 𝐻 ) ‘ 𝑎 ) ∈ 𝑆 ) |
| 42 | 41 | ad4ant24 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎 ∈ 𝑆 ) → ( ( invg ‘ 𝐻 ) ‘ 𝑎 ) ∈ 𝑆 ) |
| 43 | 39 42 | eqeltrrd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) |
| 44 | 22 43 | jca | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎 ∈ 𝑆 ) → ( ∀ 𝑏 ∈ 𝑆 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) ) |
| 45 | 44 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ∀ 𝑎 ∈ 𝑆 ( ∀ 𝑏 ∈ 𝑆 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) ) |
| 46 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 47 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 48 | 1 46 47 | issubg2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝑆 ( ∀ 𝑏 ∈ 𝑆 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) ) ) ) |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝑆 ( ∀ 𝑏 ∈ 𝑆 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) ) ) ) |
| 50 | 4 6 45 49 | mpbir3and | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 51 | 50 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) → ( ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ) |