This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem grpissubg

Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019)

Ref Expression
Hypotheses grpissubg.b 𝐵 = ( Base ‘ 𝐺 )
grpissubg.s 𝑆 = ( Base ‘ 𝐻 )
Assertion grpissubg ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) → ( ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 grpissubg.b 𝐵 = ( Base ‘ 𝐺 )
2 grpissubg.s 𝑆 = ( Base ‘ 𝐻 )
3 simpl ( ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → 𝑆𝐵 )
4 3 adantl ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝑆𝐵 )
5 2 grpbn0 ( 𝐻 ∈ Grp → 𝑆 ≠ ∅ )
6 5 ad2antlr ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝑆 ≠ ∅ )
7 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
8 mndmgm ( 𝐺 ∈ Mnd → 𝐺 ∈ Mgm )
9 7 8 syl ( 𝐺 ∈ Grp → 𝐺 ∈ Mgm )
10 grpmnd ( 𝐻 ∈ Grp → 𝐻 ∈ Mnd )
11 mndmgm ( 𝐻 ∈ Mnd → 𝐻 ∈ Mgm )
12 10 11 syl ( 𝐻 ∈ Grp → 𝐻 ∈ Mgm )
13 9 12 anim12i ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) → ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) )
14 13 adantr ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) )
15 14 ad2antrr ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎𝑆 ) ∧ 𝑏𝑆 ) → ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) )
16 simpr ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) )
17 16 ad2antrr ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎𝑆 ) ∧ 𝑏𝑆 ) → ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) )
18 simpr ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎𝑆 ) → 𝑎𝑆 )
19 18 anim1i ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎𝑆 ) ∧ 𝑏𝑆 ) → ( 𝑎𝑆𝑏𝑆 ) )
20 1 2 mgmsscl ( ( ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ∧ ( 𝑎𝑆𝑏𝑆 ) ) → ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝑆 )
21 15 17 19 20 syl3anc ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎𝑆 ) ∧ 𝑏𝑆 ) → ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝑆 )
22 21 ralrimiva ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎𝑆 ) → ∀ 𝑏𝑆 ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝑆 )
23 simpl ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) → 𝐺 ∈ Grp )
24 23 adantr ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝐺 ∈ Grp )
25 simplr ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝐻 ∈ Grp )
26 1 sseq2i ( 𝑆𝐵𝑆 ⊆ ( Base ‘ 𝐺 ) )
27 26 biimpi ( 𝑆𝐵𝑆 ⊆ ( Base ‘ 𝐺 ) )
28 27 adantr ( ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
29 28 adantl ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
30 ovres ( ( 𝑥𝑆𝑦𝑆 ) → ( 𝑥 ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( +g𝐺 ) 𝑦 ) )
31 30 adantl ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( +g𝐺 ) 𝑦 ) )
32 oveq ( ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) → ( 𝑥 ( +g𝐻 ) 𝑦 ) = ( 𝑥 ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) )
33 32 adantl ( ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → ( 𝑥 ( +g𝐻 ) 𝑦 ) = ( 𝑥 ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) )
34 33 eqcomd ( ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → ( 𝑥 ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( +g𝐻 ) 𝑦 ) )
35 34 ad2antlr ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( +g𝐻 ) 𝑦 ) )
36 31 35 eqtr3d ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑥 ( +g𝐻 ) 𝑦 ) )
37 36 ralrimivva ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑥 ( +g𝐻 ) 𝑦 ) )
38 24 25 2 29 37 grpinvssd ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ( 𝑎𝑆 → ( ( invg𝐻 ) ‘ 𝑎 ) = ( ( invg𝐺 ) ‘ 𝑎 ) ) )
39 38 imp ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎𝑆 ) → ( ( invg𝐻 ) ‘ 𝑎 ) = ( ( invg𝐺 ) ‘ 𝑎 ) )
40 eqid ( invg𝐻 ) = ( invg𝐻 )
41 2 40 grpinvcl ( ( 𝐻 ∈ Grp ∧ 𝑎𝑆 ) → ( ( invg𝐻 ) ‘ 𝑎 ) ∈ 𝑆 )
42 41 ad4ant24 ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎𝑆 ) → ( ( invg𝐻 ) ‘ 𝑎 ) ∈ 𝑆 )
43 39 42 eqeltrrd ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎𝑆 ) → ( ( invg𝐺 ) ‘ 𝑎 ) ∈ 𝑆 )
44 22 43 jca ( ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) ∧ 𝑎𝑆 ) → ( ∀ 𝑏𝑆 ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝑆 ∧ ( ( invg𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) )
45 44 ralrimiva ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ∀ 𝑎𝑆 ( ∀ 𝑏𝑆 ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝑆 ∧ ( ( invg𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) )
46 eqid ( +g𝐺 ) = ( +g𝐺 )
47 eqid ( invg𝐺 ) = ( invg𝐺 )
48 1 46 47 issubg2 ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆𝐵𝑆 ≠ ∅ ∧ ∀ 𝑎𝑆 ( ∀ 𝑏𝑆 ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝑆 ∧ ( ( invg𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) ) ) )
49 48 ad2antrr ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆𝐵𝑆 ≠ ∅ ∧ ∀ 𝑎𝑆 ( ∀ 𝑏𝑆 ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝑆 ∧ ( ( invg𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) ) ) )
50 4 6 45 49 mpbir3and ( ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) ∧ ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
51 50 ex ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ Grp ) → ( ( 𝑆𝐵 ∧ ( +g𝐻 ) = ( ( +g𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) )