This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is prime iff it satisfies Euclid's lemma euclemma . (Contributed by Mario Carneiro, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm6 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 2 | euclemma | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑥 · 𝑦 ) ↔ ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) | |
| 3 | 2 | 3expb | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑃 ∥ ( 𝑥 · 𝑦 ) ↔ ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) |
| 4 | 3 | biimpd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) |
| 5 | 4 | ralrimivva | ⊢ ( 𝑃 ∈ ℙ → ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) |
| 6 | 1 5 | jca | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ) |
| 7 | simpl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 8 | eluz2nn | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∈ ℕ ) |
| 10 | 9 | nnzd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∈ ℤ ) |
| 11 | iddvds | ⊢ ( 𝑃 ∈ ℤ → 𝑃 ∥ 𝑃 ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∥ 𝑃 ) |
| 13 | nncn | ⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℂ ) | |
| 14 | 9 13 | syl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∈ ℂ ) |
| 15 | nncn | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ ) | |
| 16 | 15 | ad2antrl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ∈ ℂ ) |
| 17 | nnne0 | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ≠ 0 ) | |
| 18 | 17 | ad2antrl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ≠ 0 ) |
| 19 | 14 16 18 | divcan1d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( ( 𝑃 / 𝑧 ) · 𝑧 ) = 𝑃 ) |
| 20 | 12 19 | breqtrrd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) ) |
| 22 | simprr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ∥ 𝑃 ) | |
| 23 | simprl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ∈ ℕ ) | |
| 24 | nndivdvds | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 ↔ ( 𝑃 / 𝑧 ) ∈ ℕ ) ) | |
| 25 | 9 23 24 | syl2anc | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑧 ∥ 𝑃 ↔ ( 𝑃 / 𝑧 ) ∈ ℕ ) ) |
| 26 | 22 25 | mpbid | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 / 𝑧 ) ∈ ℕ ) |
| 27 | 26 | nnzd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 / 𝑧 ) ∈ ℤ ) |
| 28 | nnz | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℤ ) | |
| 29 | 28 | ad2antrl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ∈ ℤ ) |
| 30 | 27 29 | jca | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( ( 𝑃 / 𝑧 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 31 | oveq1 | ⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( 𝑥 · 𝑦 ) = ( ( 𝑃 / 𝑧 ) · 𝑦 ) ) | |
| 32 | 31 | breq2d | ⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( 𝑃 ∥ ( 𝑥 · 𝑦 ) ↔ 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑦 ) ) ) |
| 33 | breq2 | ⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( 𝑃 ∥ 𝑥 ↔ 𝑃 ∥ ( 𝑃 / 𝑧 ) ) ) | |
| 34 | 33 | orbi1d | ⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ↔ ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑦 ) ) ) |
| 35 | 32 34 | imbi12d | ⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ↔ ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑦 ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑦 ) ) ) ) |
| 36 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑃 / 𝑧 ) · 𝑦 ) = ( ( 𝑃 / 𝑧 ) · 𝑧 ) ) | |
| 37 | 36 | breq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑦 ) ↔ 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) ) ) |
| 38 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑃 ∥ 𝑦 ↔ 𝑃 ∥ 𝑧 ) ) | |
| 39 | 38 | orbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑦 ) ↔ ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) ) |
| 40 | 37 39 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑦 ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑦 ) ) ↔ ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) ) ) |
| 41 | 35 40 | rspc2va | ⊢ ( ( ( ( 𝑃 / 𝑧 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) ) |
| 42 | 30 41 | sylan | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) ) |
| 43 | 21 42 | mpd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) |
| 44 | dvdsle | ⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝑃 / 𝑧 ) ∈ ℕ ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) → 𝑃 ≤ ( 𝑃 / 𝑧 ) ) ) | |
| 45 | 10 26 44 | syl2anc | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) → 𝑃 ≤ ( 𝑃 / 𝑧 ) ) ) |
| 46 | 14 | div1d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 / 1 ) = 𝑃 ) |
| 47 | 46 | breq1d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( ( 𝑃 / 1 ) ≤ ( 𝑃 / 𝑧 ) ↔ 𝑃 ≤ ( 𝑃 / 𝑧 ) ) ) |
| 48 | 45 47 | sylibrd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) → ( 𝑃 / 1 ) ≤ ( 𝑃 / 𝑧 ) ) ) |
| 49 | nnrp | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ+ ) | |
| 50 | 49 | rpregt0d | ⊢ ( 𝑧 ∈ ℕ → ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) |
| 51 | 50 | ad2antrl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) |
| 52 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 53 | rpregt0 | ⊢ ( 1 ∈ ℝ+ → ( 1 ∈ ℝ ∧ 0 < 1 ) ) | |
| 54 | 52 53 | mp1i | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 1 ∈ ℝ ∧ 0 < 1 ) ) |
| 55 | nnrp | ⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℝ+ ) | |
| 56 | 9 55 | syl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∈ ℝ+ ) |
| 57 | 56 | rpregt0d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) |
| 58 | lediv2 | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( 𝑧 ≤ 1 ↔ ( 𝑃 / 1 ) ≤ ( 𝑃 / 𝑧 ) ) ) | |
| 59 | 51 54 57 58 | syl3anc | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑧 ≤ 1 ↔ ( 𝑃 / 1 ) ≤ ( 𝑃 / 𝑧 ) ) ) |
| 60 | 48 59 | sylibrd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) → 𝑧 ≤ 1 ) ) |
| 61 | nnle1eq1 | ⊢ ( 𝑧 ∈ ℕ → ( 𝑧 ≤ 1 ↔ 𝑧 = 1 ) ) | |
| 62 | 61 | ad2antrl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑧 ≤ 1 ↔ 𝑧 = 1 ) ) |
| 63 | 60 62 | sylibd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) → 𝑧 = 1 ) ) |
| 64 | nnnn0 | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ0 ) | |
| 65 | 64 | ad2antrl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ∈ ℕ0 ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ 𝑃 ∥ 𝑧 ) → 𝑧 ∈ ℕ0 ) |
| 67 | nnnn0 | ⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) | |
| 68 | 9 67 | syl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∈ ℕ0 ) |
| 69 | 68 | adantr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ 𝑃 ∥ 𝑧 ) → 𝑃 ∈ ℕ0 ) |
| 70 | simplrr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ 𝑃 ∥ 𝑧 ) → 𝑧 ∥ 𝑃 ) | |
| 71 | simpr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ 𝑃 ∥ 𝑧 ) → 𝑃 ∥ 𝑧 ) | |
| 72 | dvdseq | ⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ) ∧ ( 𝑧 ∥ 𝑃 ∧ 𝑃 ∥ 𝑧 ) ) → 𝑧 = 𝑃 ) | |
| 73 | 66 69 70 71 72 | syl22anc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ 𝑃 ∥ 𝑧 ) → 𝑧 = 𝑃 ) |
| 74 | 73 | ex | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∥ 𝑧 → 𝑧 = 𝑃 ) ) |
| 75 | 63 74 | orim12d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 76 | 75 | imp | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
| 77 | 43 76 | syldan | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
| 78 | 77 | an32s | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
| 79 | 78 | expr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ∧ 𝑧 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 80 | 79 | ralrimiva | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 81 | isprm2 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) | |
| 82 | 7 80 81 | sylanbrc | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → 𝑃 ∈ ℙ ) |
| 83 | 6 82 | impbii | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ) |