This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfconst and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfconstlem | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass | ⊢ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ⊆ dom ( 𝐴 × { 𝐶 } ) | |
| 2 | 1 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ⊆ dom ( 𝐴 × { 𝐶 } ) ) |
| 3 | cnvimarndm | ⊢ ( ◡ ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) = dom ( 𝐴 × { 𝐶 } ) | |
| 4 | fconst6g | ⊢ ( 𝐶 ∈ 𝐵 → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ 𝐵 ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ 𝐵 ) |
| 6 | frn | ⊢ ( ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ 𝐵 → ran ( 𝐴 × { 𝐶 } ) ⊆ 𝐵 ) | |
| 7 | imass2 | ⊢ ( ran ( 𝐴 × { 𝐶 } ) ⊆ 𝐵 → ( ◡ ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) ⊆ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ ran ( 𝐴 × { 𝐶 } ) ) ⊆ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ) |
| 9 | 3 8 | eqsstrrid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → dom ( 𝐴 × { 𝐶 } ) ⊆ ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ) |
| 10 | 2 9 | eqssd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = dom ( 𝐴 × { 𝐶 } ) ) |
| 11 | fconstg | ⊢ ( 𝐶 ∈ ℝ → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ) | |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ) |
| 13 | 12 | fdmd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → dom ( 𝐴 × { 𝐶 } ) = 𝐴 ) |
| 14 | 10 13 | eqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = 𝐴 ) |
| 15 | simpll | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ∈ dom vol ) | |
| 16 | 14 15 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol ) |
| 17 | 11 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ) |
| 18 | incom | ⊢ ( { 𝐶 } ∩ 𝐵 ) = ( 𝐵 ∩ { 𝐶 } ) | |
| 19 | simpr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ¬ 𝐶 ∈ 𝐵 ) | |
| 20 | disjsn | ⊢ ( ( 𝐵 ∩ { 𝐶 } ) = ∅ ↔ ¬ 𝐶 ∈ 𝐵 ) | |
| 21 | 19 20 | sylibr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( 𝐵 ∩ { 𝐶 } ) = ∅ ) |
| 22 | 18 21 | eqtrid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( { 𝐶 } ∩ 𝐵 ) = ∅ ) |
| 23 | fimacnvdisj | ⊢ ( ( ( 𝐴 × { 𝐶 } ) : 𝐴 ⟶ { 𝐶 } ∧ ( { 𝐶 } ∩ 𝐵 ) = ∅ ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = ∅ ) | |
| 24 | 17 22 23 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) = ∅ ) |
| 25 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 26 | 24 25 | eqeltrdi | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) ∧ ¬ 𝐶 ∈ 𝐵 ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol ) |
| 27 | 16 26 | pm2.61dan | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ ) → ( ◡ ( 𝐴 × { 𝐶 } ) “ 𝐵 ) ∈ dom vol ) |