This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set hascountably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013) Avoid ax-pow . (Revised by BTernaryTau, 2-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isinf | ⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ω ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑛 = ∅ → ( 𝑥 ≈ 𝑛 ↔ 𝑥 ≈ ∅ ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑛 = ∅ → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ) ) |
| 3 | 2 | exbidv | ⊢ ( 𝑛 = ∅ → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ) ) |
| 4 | breq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑥 ≈ 𝑛 ↔ 𝑥 ≈ 𝑚 ) ) | |
| 5 | 4 | anbi2d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ) ) ) |
| 6 | 5 | exbidv | ⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ) ) ) |
| 7 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑛 = suc 𝑚 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
| 9 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝑛 ↔ 𝑦 ≈ 𝑛 ) ) | |
| 10 | breq2 | ⊢ ( 𝑛 = suc 𝑚 → ( 𝑦 ≈ 𝑛 ↔ 𝑦 ≈ suc 𝑚 ) ) | |
| 11 | 9 10 | sylan9bbr | ⊢ ( ( 𝑛 = suc 𝑚 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ≈ 𝑛 ↔ 𝑦 ≈ suc 𝑚 ) ) |
| 12 | 8 11 | anbi12d | ⊢ ( ( 𝑛 = suc 𝑚 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) |
| 13 | 12 | cbvexdvaw | ⊢ ( 𝑛 = suc 𝑚 → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) |
| 14 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
| 15 | peano1 | ⊢ ∅ ∈ ω | |
| 16 | enrefnn | ⊢ ( ∅ ∈ ω → ∅ ≈ ∅ ) | |
| 17 | 15 16 | ax-mp | ⊢ ∅ ≈ ∅ |
| 18 | 0ex | ⊢ ∅ ∈ V | |
| 19 | sseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 20 | breq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ≈ ∅ ↔ ∅ ≈ ∅ ) ) | |
| 21 | 19 20 | anbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ↔ ( ∅ ⊆ 𝐴 ∧ ∅ ≈ ∅ ) ) ) |
| 22 | 18 21 | spcev | ⊢ ( ( ∅ ⊆ 𝐴 ∧ ∅ ≈ ∅ ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ) |
| 23 | 14 17 22 | mp2an | ⊢ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) |
| 24 | 23 | a1i | ⊢ ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ) |
| 25 | ssdif0 | ⊢ ( 𝐴 ⊆ 𝑥 ↔ ( 𝐴 ∖ 𝑥 ) = ∅ ) | |
| 26 | eqss | ⊢ ( 𝑥 = 𝐴 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑥 ) ) | |
| 27 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ 𝑚 ↔ 𝐴 ≈ 𝑚 ) ) | |
| 28 | 27 | biimpa | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 ≈ 𝑚 ) → 𝐴 ≈ 𝑚 ) |
| 29 | rspe | ⊢ ( ( 𝑚 ∈ ω ∧ 𝐴 ≈ 𝑚 ) → ∃ 𝑚 ∈ ω 𝐴 ≈ 𝑚 ) | |
| 30 | 28 29 | sylan2 | ⊢ ( ( 𝑚 ∈ ω ∧ ( 𝑥 = 𝐴 ∧ 𝑥 ≈ 𝑚 ) ) → ∃ 𝑚 ∈ ω 𝐴 ≈ 𝑚 ) |
| 31 | isfi | ⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑚 ∈ ω 𝐴 ≈ 𝑚 ) | |
| 32 | 30 31 | sylibr | ⊢ ( ( 𝑚 ∈ ω ∧ ( 𝑥 = 𝐴 ∧ 𝑥 ≈ 𝑚 ) ) → 𝐴 ∈ Fin ) |
| 33 | 32 | expcom | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 ≈ 𝑚 ) → ( 𝑚 ∈ ω → 𝐴 ∈ Fin ) ) |
| 34 | 26 33 | sylanbr | ⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑥 ) ∧ 𝑥 ≈ 𝑚 ) → ( 𝑚 ∈ ω → 𝐴 ∈ Fin ) ) |
| 35 | 34 | ex | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑥 ) → ( 𝑥 ≈ 𝑚 → ( 𝑚 ∈ ω → 𝐴 ∈ Fin ) ) ) |
| 36 | 25 35 | sylan2br | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) = ∅ ) → ( 𝑥 ≈ 𝑚 → ( 𝑚 ∈ ω → 𝐴 ∈ Fin ) ) ) |
| 37 | 36 | expcom | ⊢ ( ( 𝐴 ∖ 𝑥 ) = ∅ → ( 𝑥 ⊆ 𝐴 → ( 𝑥 ≈ 𝑚 → ( 𝑚 ∈ ω → 𝐴 ∈ Fin ) ) ) ) |
| 38 | 37 | 3impd | ⊢ ( ( 𝐴 ∖ 𝑥 ) = ∅ → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ∧ 𝑚 ∈ ω ) → 𝐴 ∈ Fin ) ) |
| 39 | 38 | com12 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ∧ 𝑚 ∈ ω ) → ( ( 𝐴 ∖ 𝑥 ) = ∅ → 𝐴 ∈ Fin ) ) |
| 40 | 39 | con3d | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ∧ 𝑚 ∈ ω ) → ( ¬ 𝐴 ∈ Fin → ¬ ( 𝐴 ∖ 𝑥 ) = ∅ ) ) |
| 41 | bren | ⊢ ( 𝑥 ≈ 𝑚 ↔ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) | |
| 42 | neq0 | ⊢ ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ) | |
| 43 | eldifi | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → 𝑧 ∈ 𝐴 ) | |
| 44 | 43 | snssd | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → { 𝑧 } ⊆ 𝐴 ) |
| 45 | unss | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ { 𝑧 } ⊆ 𝐴 ) ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ) | |
| 46 | 45 | biimpi | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ { 𝑧 } ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 47 | 44 46 | sylan2 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 48 | 47 | ad2ant2r | ⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) ∧ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 49 | vex | ⊢ 𝑧 ∈ V | |
| 50 | vex | ⊢ 𝑚 ∈ V | |
| 51 | 49 50 | f1osn | ⊢ { 〈 𝑧 , 𝑚 〉 } : { 𝑧 } –1-1-onto→ { 𝑚 } |
| 52 | 51 | jctr | ⊢ ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 → ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 ∧ { 〈 𝑧 , 𝑚 〉 } : { 𝑧 } –1-1-onto→ { 𝑚 } ) ) |
| 53 | eldifn | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → ¬ 𝑧 ∈ 𝑥 ) | |
| 54 | disjsn | ⊢ ( ( 𝑥 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑥 ) | |
| 55 | 53 54 | sylibr | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → ( 𝑥 ∩ { 𝑧 } ) = ∅ ) |
| 56 | nnord | ⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) | |
| 57 | orddisj | ⊢ ( Ord 𝑚 → ( 𝑚 ∩ { 𝑚 } ) = ∅ ) | |
| 58 | 56 57 | syl | ⊢ ( 𝑚 ∈ ω → ( 𝑚 ∩ { 𝑚 } ) = ∅ ) |
| 59 | 55 58 | anim12i | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) → ( ( 𝑥 ∩ { 𝑧 } ) = ∅ ∧ ( 𝑚 ∩ { 𝑚 } ) = ∅ ) ) |
| 60 | f1oun | ⊢ ( ( ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 ∧ { 〈 𝑧 , 𝑚 〉 } : { 𝑧 } –1-1-onto→ { 𝑚 } ) ∧ ( ( 𝑥 ∩ { 𝑧 } ) = ∅ ∧ ( 𝑚 ∩ { 𝑚 } ) = ∅ ) ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ ( 𝑚 ∪ { 𝑚 } ) ) | |
| 61 | 52 59 60 | syl2an | ⊢ ( ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 ∧ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ ( 𝑚 ∪ { 𝑚 } ) ) |
| 62 | df-suc | ⊢ suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) | |
| 63 | f1oeq3 | ⊢ ( suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ↔ ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ ( 𝑚 ∪ { 𝑚 } ) ) ) | |
| 64 | 62 63 | ax-mp | ⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ↔ ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ ( 𝑚 ∪ { 𝑚 } ) ) |
| 65 | vex | ⊢ 𝑓 ∈ V | |
| 66 | snex | ⊢ { 〈 𝑧 , 𝑚 〉 } ∈ V | |
| 67 | 65 66 | unex | ⊢ ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) ∈ V |
| 68 | f1oeq1 | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) → ( 𝑔 : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ↔ ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ) ) | |
| 69 | 67 68 | spcev | ⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 → ∃ 𝑔 𝑔 : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ) |
| 70 | bren | ⊢ ( ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ↔ ∃ 𝑔 𝑔 : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ) | |
| 71 | 69 70 | sylibr | ⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 → ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) |
| 72 | 64 71 | sylbir | ⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ ( 𝑚 ∪ { 𝑚 } ) → ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) |
| 73 | 61 72 | syl | ⊢ ( ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 ∧ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) |
| 74 | 73 | adantll | ⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) ∧ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) |
| 75 | vex | ⊢ 𝑥 ∈ V | |
| 76 | snex | ⊢ { 𝑧 } ∈ V | |
| 77 | 75 76 | unex | ⊢ ( 𝑥 ∪ { 𝑧 } ) ∈ V |
| 78 | sseq1 | ⊢ ( 𝑦 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ⊆ 𝐴 ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) | |
| 79 | breq1 | ⊢ ( 𝑦 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ≈ suc 𝑚 ↔ ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) ) | |
| 80 | 78 79 | anbi12d | ⊢ ( 𝑦 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ↔ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) ) ) |
| 81 | 77 80 | spcev | ⊢ ( ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) |
| 82 | 48 74 81 | syl2anc | ⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) ∧ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) |
| 83 | 82 | expcom | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) |
| 84 | 83 | ex | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → ( 𝑚 ∈ ω → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 85 | 84 | exlimiv | ⊢ ( ∃ 𝑧 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → ( 𝑚 ∈ ω → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 86 | 42 85 | sylbi | ⊢ ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ( 𝑚 ∈ ω → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 87 | 86 | com13 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) → ( 𝑚 ∈ ω → ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 88 | 87 | expcom | ⊢ ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 → ( 𝑥 ⊆ 𝐴 → ( 𝑚 ∈ ω → ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) ) |
| 89 | 88 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑚 → ( 𝑥 ⊆ 𝐴 → ( 𝑚 ∈ ω → ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) ) |
| 90 | 41 89 | sylbi | ⊢ ( 𝑥 ≈ 𝑚 → ( 𝑥 ⊆ 𝐴 → ( 𝑚 ∈ ω → ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) ) |
| 91 | 90 | 3imp21 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ∧ 𝑚 ∈ ω ) → ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) |
| 92 | 40 91 | syld | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ∧ 𝑚 ∈ ω ) → ( ¬ 𝐴 ∈ Fin → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) |
| 93 | 92 | 3expia | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ) → ( 𝑚 ∈ ω → ( ¬ 𝐴 ∈ Fin → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 94 | 93 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ) → ( 𝑚 ∈ ω → ( ¬ 𝐴 ∈ Fin → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 95 | 94 | com3l | ⊢ ( 𝑚 ∈ ω → ( ¬ 𝐴 ∈ Fin → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 96 | 3 6 13 24 95 | finds2 | ⊢ ( 𝑛 ∈ ω → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ) ) |
| 97 | 96 | com12 | ⊢ ( ¬ 𝐴 ∈ Fin → ( 𝑛 ∈ ω → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ) ) |
| 98 | 97 | ralrimiv | ⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ω ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ) |