This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set hascountably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013) Avoid ax-pow . (Revised by BTernaryTau, 2-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isinf | |- ( -. A e. Fin -> A. n e. _om E. x ( x C_ A /\ x ~~ n ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( n = (/) -> ( x ~~ n <-> x ~~ (/) ) ) |
|
| 2 | 1 | anbi2d | |- ( n = (/) -> ( ( x C_ A /\ x ~~ n ) <-> ( x C_ A /\ x ~~ (/) ) ) ) |
| 3 | 2 | exbidv | |- ( n = (/) -> ( E. x ( x C_ A /\ x ~~ n ) <-> E. x ( x C_ A /\ x ~~ (/) ) ) ) |
| 4 | breq2 | |- ( n = m -> ( x ~~ n <-> x ~~ m ) ) |
|
| 5 | 4 | anbi2d | |- ( n = m -> ( ( x C_ A /\ x ~~ n ) <-> ( x C_ A /\ x ~~ m ) ) ) |
| 6 | 5 | exbidv | |- ( n = m -> ( E. x ( x C_ A /\ x ~~ n ) <-> E. x ( x C_ A /\ x ~~ m ) ) ) |
| 7 | sseq1 | |- ( x = y -> ( x C_ A <-> y C_ A ) ) |
|
| 8 | 7 | adantl | |- ( ( n = suc m /\ x = y ) -> ( x C_ A <-> y C_ A ) ) |
| 9 | breq1 | |- ( x = y -> ( x ~~ n <-> y ~~ n ) ) |
|
| 10 | breq2 | |- ( n = suc m -> ( y ~~ n <-> y ~~ suc m ) ) |
|
| 11 | 9 10 | sylan9bbr | |- ( ( n = suc m /\ x = y ) -> ( x ~~ n <-> y ~~ suc m ) ) |
| 12 | 8 11 | anbi12d | |- ( ( n = suc m /\ x = y ) -> ( ( x C_ A /\ x ~~ n ) <-> ( y C_ A /\ y ~~ suc m ) ) ) |
| 13 | 12 | cbvexdvaw | |- ( n = suc m -> ( E. x ( x C_ A /\ x ~~ n ) <-> E. y ( y C_ A /\ y ~~ suc m ) ) ) |
| 14 | 0ss | |- (/) C_ A |
|
| 15 | peano1 | |- (/) e. _om |
|
| 16 | enrefnn | |- ( (/) e. _om -> (/) ~~ (/) ) |
|
| 17 | 15 16 | ax-mp | |- (/) ~~ (/) |
| 18 | 0ex | |- (/) e. _V |
|
| 19 | sseq1 | |- ( x = (/) -> ( x C_ A <-> (/) C_ A ) ) |
|
| 20 | breq1 | |- ( x = (/) -> ( x ~~ (/) <-> (/) ~~ (/) ) ) |
|
| 21 | 19 20 | anbi12d | |- ( x = (/) -> ( ( x C_ A /\ x ~~ (/) ) <-> ( (/) C_ A /\ (/) ~~ (/) ) ) ) |
| 22 | 18 21 | spcev | |- ( ( (/) C_ A /\ (/) ~~ (/) ) -> E. x ( x C_ A /\ x ~~ (/) ) ) |
| 23 | 14 17 22 | mp2an | |- E. x ( x C_ A /\ x ~~ (/) ) |
| 24 | 23 | a1i | |- ( -. A e. Fin -> E. x ( x C_ A /\ x ~~ (/) ) ) |
| 25 | ssdif0 | |- ( A C_ x <-> ( A \ x ) = (/) ) |
|
| 26 | eqss | |- ( x = A <-> ( x C_ A /\ A C_ x ) ) |
|
| 27 | breq1 | |- ( x = A -> ( x ~~ m <-> A ~~ m ) ) |
|
| 28 | 27 | biimpa | |- ( ( x = A /\ x ~~ m ) -> A ~~ m ) |
| 29 | rspe | |- ( ( m e. _om /\ A ~~ m ) -> E. m e. _om A ~~ m ) |
|
| 30 | 28 29 | sylan2 | |- ( ( m e. _om /\ ( x = A /\ x ~~ m ) ) -> E. m e. _om A ~~ m ) |
| 31 | isfi | |- ( A e. Fin <-> E. m e. _om A ~~ m ) |
|
| 32 | 30 31 | sylibr | |- ( ( m e. _om /\ ( x = A /\ x ~~ m ) ) -> A e. Fin ) |
| 33 | 32 | expcom | |- ( ( x = A /\ x ~~ m ) -> ( m e. _om -> A e. Fin ) ) |
| 34 | 26 33 | sylanbr | |- ( ( ( x C_ A /\ A C_ x ) /\ x ~~ m ) -> ( m e. _om -> A e. Fin ) ) |
| 35 | 34 | ex | |- ( ( x C_ A /\ A C_ x ) -> ( x ~~ m -> ( m e. _om -> A e. Fin ) ) ) |
| 36 | 25 35 | sylan2br | |- ( ( x C_ A /\ ( A \ x ) = (/) ) -> ( x ~~ m -> ( m e. _om -> A e. Fin ) ) ) |
| 37 | 36 | expcom | |- ( ( A \ x ) = (/) -> ( x C_ A -> ( x ~~ m -> ( m e. _om -> A e. Fin ) ) ) ) |
| 38 | 37 | 3impd | |- ( ( A \ x ) = (/) -> ( ( x C_ A /\ x ~~ m /\ m e. _om ) -> A e. Fin ) ) |
| 39 | 38 | com12 | |- ( ( x C_ A /\ x ~~ m /\ m e. _om ) -> ( ( A \ x ) = (/) -> A e. Fin ) ) |
| 40 | 39 | con3d | |- ( ( x C_ A /\ x ~~ m /\ m e. _om ) -> ( -. A e. Fin -> -. ( A \ x ) = (/) ) ) |
| 41 | bren | |- ( x ~~ m <-> E. f f : x -1-1-onto-> m ) |
|
| 42 | neq0 | |- ( -. ( A \ x ) = (/) <-> E. z z e. ( A \ x ) ) |
|
| 43 | eldifi | |- ( z e. ( A \ x ) -> z e. A ) |
|
| 44 | 43 | snssd | |- ( z e. ( A \ x ) -> { z } C_ A ) |
| 45 | unss | |- ( ( x C_ A /\ { z } C_ A ) <-> ( x u. { z } ) C_ A ) |
|
| 46 | 45 | biimpi | |- ( ( x C_ A /\ { z } C_ A ) -> ( x u. { z } ) C_ A ) |
| 47 | 44 46 | sylan2 | |- ( ( x C_ A /\ z e. ( A \ x ) ) -> ( x u. { z } ) C_ A ) |
| 48 | 47 | ad2ant2r | |- ( ( ( x C_ A /\ f : x -1-1-onto-> m ) /\ ( z e. ( A \ x ) /\ m e. _om ) ) -> ( x u. { z } ) C_ A ) |
| 49 | vex | |- z e. _V |
|
| 50 | vex | |- m e. _V |
|
| 51 | 49 50 | f1osn | |- { <. z , m >. } : { z } -1-1-onto-> { m } |
| 52 | 51 | jctr | |- ( f : x -1-1-onto-> m -> ( f : x -1-1-onto-> m /\ { <. z , m >. } : { z } -1-1-onto-> { m } ) ) |
| 53 | eldifn | |- ( z e. ( A \ x ) -> -. z e. x ) |
|
| 54 | disjsn | |- ( ( x i^i { z } ) = (/) <-> -. z e. x ) |
|
| 55 | 53 54 | sylibr | |- ( z e. ( A \ x ) -> ( x i^i { z } ) = (/) ) |
| 56 | nnord | |- ( m e. _om -> Ord m ) |
|
| 57 | orddisj | |- ( Ord m -> ( m i^i { m } ) = (/) ) |
|
| 58 | 56 57 | syl | |- ( m e. _om -> ( m i^i { m } ) = (/) ) |
| 59 | 55 58 | anim12i | |- ( ( z e. ( A \ x ) /\ m e. _om ) -> ( ( x i^i { z } ) = (/) /\ ( m i^i { m } ) = (/) ) ) |
| 60 | f1oun | |- ( ( ( f : x -1-1-onto-> m /\ { <. z , m >. } : { z } -1-1-onto-> { m } ) /\ ( ( x i^i { z } ) = (/) /\ ( m i^i { m } ) = (/) ) ) -> ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> ( m u. { m } ) ) |
|
| 61 | 52 59 60 | syl2an | |- ( ( f : x -1-1-onto-> m /\ ( z e. ( A \ x ) /\ m e. _om ) ) -> ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> ( m u. { m } ) ) |
| 62 | df-suc | |- suc m = ( m u. { m } ) |
|
| 63 | f1oeq3 | |- ( suc m = ( m u. { m } ) -> ( ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> suc m <-> ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> ( m u. { m } ) ) ) |
|
| 64 | 62 63 | ax-mp | |- ( ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> suc m <-> ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> ( m u. { m } ) ) |
| 65 | vex | |- f e. _V |
|
| 66 | snex | |- { <. z , m >. } e. _V |
|
| 67 | 65 66 | unex | |- ( f u. { <. z , m >. } ) e. _V |
| 68 | f1oeq1 | |- ( g = ( f u. { <. z , m >. } ) -> ( g : ( x u. { z } ) -1-1-onto-> suc m <-> ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> suc m ) ) |
|
| 69 | 67 68 | spcev | |- ( ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> suc m -> E. g g : ( x u. { z } ) -1-1-onto-> suc m ) |
| 70 | bren | |- ( ( x u. { z } ) ~~ suc m <-> E. g g : ( x u. { z } ) -1-1-onto-> suc m ) |
|
| 71 | 69 70 | sylibr | |- ( ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> suc m -> ( x u. { z } ) ~~ suc m ) |
| 72 | 64 71 | sylbir | |- ( ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> ( m u. { m } ) -> ( x u. { z } ) ~~ suc m ) |
| 73 | 61 72 | syl | |- ( ( f : x -1-1-onto-> m /\ ( z e. ( A \ x ) /\ m e. _om ) ) -> ( x u. { z } ) ~~ suc m ) |
| 74 | 73 | adantll | |- ( ( ( x C_ A /\ f : x -1-1-onto-> m ) /\ ( z e. ( A \ x ) /\ m e. _om ) ) -> ( x u. { z } ) ~~ suc m ) |
| 75 | vex | |- x e. _V |
|
| 76 | snex | |- { z } e. _V |
|
| 77 | 75 76 | unex | |- ( x u. { z } ) e. _V |
| 78 | sseq1 | |- ( y = ( x u. { z } ) -> ( y C_ A <-> ( x u. { z } ) C_ A ) ) |
|
| 79 | breq1 | |- ( y = ( x u. { z } ) -> ( y ~~ suc m <-> ( x u. { z } ) ~~ suc m ) ) |
|
| 80 | 78 79 | anbi12d | |- ( y = ( x u. { z } ) -> ( ( y C_ A /\ y ~~ suc m ) <-> ( ( x u. { z } ) C_ A /\ ( x u. { z } ) ~~ suc m ) ) ) |
| 81 | 77 80 | spcev | |- ( ( ( x u. { z } ) C_ A /\ ( x u. { z } ) ~~ suc m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) |
| 82 | 48 74 81 | syl2anc | |- ( ( ( x C_ A /\ f : x -1-1-onto-> m ) /\ ( z e. ( A \ x ) /\ m e. _om ) ) -> E. y ( y C_ A /\ y ~~ suc m ) ) |
| 83 | 82 | expcom | |- ( ( z e. ( A \ x ) /\ m e. _om ) -> ( ( x C_ A /\ f : x -1-1-onto-> m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) |
| 84 | 83 | ex | |- ( z e. ( A \ x ) -> ( m e. _om -> ( ( x C_ A /\ f : x -1-1-onto-> m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
| 85 | 84 | exlimiv | |- ( E. z z e. ( A \ x ) -> ( m e. _om -> ( ( x C_ A /\ f : x -1-1-onto-> m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
| 86 | 42 85 | sylbi | |- ( -. ( A \ x ) = (/) -> ( m e. _om -> ( ( x C_ A /\ f : x -1-1-onto-> m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
| 87 | 86 | com13 | |- ( ( x C_ A /\ f : x -1-1-onto-> m ) -> ( m e. _om -> ( -. ( A \ x ) = (/) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
| 88 | 87 | expcom | |- ( f : x -1-1-onto-> m -> ( x C_ A -> ( m e. _om -> ( -. ( A \ x ) = (/) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) ) |
| 89 | 88 | exlimiv | |- ( E. f f : x -1-1-onto-> m -> ( x C_ A -> ( m e. _om -> ( -. ( A \ x ) = (/) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) ) |
| 90 | 41 89 | sylbi | |- ( x ~~ m -> ( x C_ A -> ( m e. _om -> ( -. ( A \ x ) = (/) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) ) |
| 91 | 90 | 3imp21 | |- ( ( x C_ A /\ x ~~ m /\ m e. _om ) -> ( -. ( A \ x ) = (/) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) |
| 92 | 40 91 | syld | |- ( ( x C_ A /\ x ~~ m /\ m e. _om ) -> ( -. A e. Fin -> E. y ( y C_ A /\ y ~~ suc m ) ) ) |
| 93 | 92 | 3expia | |- ( ( x C_ A /\ x ~~ m ) -> ( m e. _om -> ( -. A e. Fin -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
| 94 | 93 | exlimiv | |- ( E. x ( x C_ A /\ x ~~ m ) -> ( m e. _om -> ( -. A e. Fin -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
| 95 | 94 | com3l | |- ( m e. _om -> ( -. A e. Fin -> ( E. x ( x C_ A /\ x ~~ m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
| 96 | 3 6 13 24 95 | finds2 | |- ( n e. _om -> ( -. A e. Fin -> E. x ( x C_ A /\ x ~~ n ) ) ) |
| 97 | 96 | com12 | |- ( -. A e. Fin -> ( n e. _om -> E. x ( x C_ A /\ x ~~ n ) ) ) |
| 98 | 97 | ralrimiv | |- ( -. A e. Fin -> A. n e. _om E. x ( x C_ A /\ x ~~ n ) ) |