This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017) Avoid ax-13 . (Revised by GG, 10-Jan-2024) Reduce axiom usage. (Revised by Wolf Lammen, 10-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvaldvaw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | cbvexdvaw | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvaldvaw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 1 | notbid | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
| 3 | 2 | cbvaldvaw | ⊢ ( 𝜑 → ( ∀ 𝑥 ¬ 𝜓 ↔ ∀ 𝑦 ¬ 𝜒 ) ) |
| 4 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜓 ↔ ¬ ∃ 𝑥 𝜓 ) | |
| 5 | alnex | ⊢ ( ∀ 𝑦 ¬ 𝜒 ↔ ¬ ∃ 𝑦 𝜒 ) | |
| 6 | 3 4 5 | 3bitr3g | ⊢ ( 𝜑 → ( ¬ ∃ 𝑥 𝜓 ↔ ¬ ∃ 𝑦 𝜒 ) ) |
| 7 | 6 | con4bid | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜒 ) ) |