This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fineqv . (Contributed by Mario Carneiro, 20-Jan-2013) (Proof shortened by Stefan O'Rear, 3-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fineqvlem | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝒫 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 𝐴 ∈ V ) |
| 3 | 2 | pwexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 𝒫 𝐴 ∈ V ) |
| 4 | ssrab2 | ⊢ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ⊆ 𝒫 𝐴 | |
| 5 | elpw2g | ⊢ ( 𝒫 𝐴 ∈ V → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ↔ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ⊆ 𝒫 𝐴 ) ) | |
| 6 | 2 5 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ↔ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ⊆ 𝒫 𝐴 ) ) |
| 7 | 4 6 | mpbiri | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ) |
| 8 | 7 | a1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( 𝑏 ∈ ω → { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ) ) |
| 9 | isinf | ⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑏 ∈ ω ∃ 𝑒 ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) ) | |
| 10 | 9 | r19.21bi | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑏 ∈ ω ) → ∃ 𝑒 ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) ) |
| 11 | 10 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ∃ 𝑒 ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) ) |
| 12 | velpw | ⊢ ( 𝑒 ∈ 𝒫 𝐴 ↔ 𝑒 ⊆ 𝐴 ) | |
| 13 | 12 | biimpri | ⊢ ( 𝑒 ⊆ 𝐴 → 𝑒 ∈ 𝒫 𝐴 ) |
| 14 | 13 | anim1i | ⊢ ( ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) → ( 𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑏 ) ) |
| 15 | breq1 | ⊢ ( 𝑑 = 𝑒 → ( 𝑑 ≈ 𝑏 ↔ 𝑒 ≈ 𝑏 ) ) | |
| 16 | 15 | elrab | ⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ↔ ( 𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑏 ) ) |
| 17 | 14 16 | sylibr | ⊢ ( ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) → 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) |
| 18 | 17 | eximi | ⊢ ( ∃ 𝑒 ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) → ∃ 𝑒 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) |
| 19 | 11 18 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ∃ 𝑒 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) |
| 20 | eleq2 | ⊢ ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ↔ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ) ) | |
| 21 | 20 | biimpcd | ⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ) ) |
| 22 | 21 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ) ) |
| 23 | 16 | simprbi | ⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } → 𝑒 ≈ 𝑏 ) |
| 24 | breq1 | ⊢ ( 𝑑 = 𝑒 → ( 𝑑 ≈ 𝑐 ↔ 𝑒 ≈ 𝑐 ) ) | |
| 25 | 24 | elrab | ⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ↔ ( 𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑐 ) ) |
| 26 | 25 | simprbi | ⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑒 ≈ 𝑐 ) |
| 27 | ensym | ⊢ ( 𝑒 ≈ 𝑏 → 𝑏 ≈ 𝑒 ) | |
| 28 | entr | ⊢ ( ( 𝑏 ≈ 𝑒 ∧ 𝑒 ≈ 𝑐 ) → 𝑏 ≈ 𝑐 ) | |
| 29 | 27 28 | sylan | ⊢ ( ( 𝑒 ≈ 𝑏 ∧ 𝑒 ≈ 𝑐 ) → 𝑏 ≈ 𝑐 ) |
| 30 | 23 26 29 | syl2an | ⊢ ( ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ) → 𝑏 ≈ 𝑐 ) |
| 31 | 30 | ex | ⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } → ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑏 ≈ 𝑐 ) ) |
| 32 | 31 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) → ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑏 ≈ 𝑐 ) ) |
| 33 | nneneq | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑏 ≈ 𝑐 ↔ 𝑏 = 𝑐 ) ) | |
| 34 | 33 | biimpd | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑏 ≈ 𝑐 → 𝑏 = 𝑐 ) ) |
| 35 | 34 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) → ( 𝑏 ≈ 𝑐 → 𝑏 = 𝑐 ) ) |
| 36 | 22 32 35 | 3syld | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑏 = 𝑐 ) ) |
| 37 | 19 36 | exlimddv | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑏 = 𝑐 ) ) |
| 38 | breq2 | ⊢ ( 𝑏 = 𝑐 → ( 𝑑 ≈ 𝑏 ↔ 𝑑 ≈ 𝑐 ) ) | |
| 39 | 38 | rabbidv | ⊢ ( 𝑏 = 𝑐 → { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ) |
| 40 | 37 39 | impbid1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ↔ 𝑏 = 𝑐 ) ) |
| 41 | 40 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ↔ 𝑏 = 𝑐 ) ) ) |
| 42 | 8 41 | dom2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝒫 𝐴 ∈ V → ω ≼ 𝒫 𝒫 𝐴 ) ) |
| 43 | 3 42 | mpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝒫 𝒫 𝐴 ) |