This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg ). (Contributed by BTernaryTau, 31-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enrefnn | ⊢ ( 𝐴 ∈ ω → 𝐴 ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) | |
| 2 | 1 1 | breq12d | ⊢ ( 𝑥 = ∅ → ( 𝑥 ≈ 𝑥 ↔ ∅ ≈ ∅ ) ) |
| 3 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 4 | 3 3 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝑥 ↔ 𝑦 ≈ 𝑦 ) ) |
| 5 | id | ⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) | |
| 6 | 5 5 | breq12d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ≈ 𝑥 ↔ suc 𝑦 ≈ suc 𝑦 ) ) |
| 7 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 8 | 7 7 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴 ) ) |
| 9 | eqid | ⊢ ∅ = ∅ | |
| 10 | en0 | ⊢ ( ∅ ≈ ∅ ↔ ∅ = ∅ ) | |
| 11 | 9 10 | mpbir | ⊢ ∅ ≈ ∅ |
| 12 | en2sn | ⊢ ( ( 𝑦 ∈ V ∧ 𝑦 ∈ V ) → { 𝑦 } ≈ { 𝑦 } ) | |
| 13 | 12 | el2v | ⊢ { 𝑦 } ≈ { 𝑦 } |
| 14 | 13 | jctr | ⊢ ( 𝑦 ≈ 𝑦 → ( 𝑦 ≈ 𝑦 ∧ { 𝑦 } ≈ { 𝑦 } ) ) |
| 15 | nnord | ⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) | |
| 16 | orddisj | ⊢ ( Ord 𝑦 → ( 𝑦 ∩ { 𝑦 } ) = ∅ ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑦 ∈ ω → ( 𝑦 ∩ { 𝑦 } ) = ∅ ) |
| 18 | 17 17 | jca | ⊢ ( 𝑦 ∈ ω → ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( 𝑦 ∩ { 𝑦 } ) = ∅ ) ) |
| 19 | unen | ⊢ ( ( ( 𝑦 ≈ 𝑦 ∧ { 𝑦 } ≈ { 𝑦 } ) ∧ ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( 𝑦 ∩ { 𝑦 } ) = ∅ ) ) → ( 𝑦 ∪ { 𝑦 } ) ≈ ( 𝑦 ∪ { 𝑦 } ) ) | |
| 20 | 14 18 19 | syl2anr | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑦 ≈ 𝑦 ) → ( 𝑦 ∪ { 𝑦 } ) ≈ ( 𝑦 ∪ { 𝑦 } ) ) |
| 21 | df-suc | ⊢ suc 𝑦 = ( 𝑦 ∪ { 𝑦 } ) | |
| 22 | 20 21 21 | 3brtr4g | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑦 ≈ 𝑦 ) → suc 𝑦 ≈ suc 𝑦 ) |
| 23 | 22 | ex | ⊢ ( 𝑦 ∈ ω → ( 𝑦 ≈ 𝑦 → suc 𝑦 ≈ suc 𝑦 ) ) |
| 24 | 2 4 6 8 11 23 | finds | ⊢ ( 𝐴 ∈ ω → 𝐴 ≈ 𝐴 ) |