This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Fin2 expressed in terms of minimal elements. (Contributed by Stefan O'Rear, 2-Nov-2014) (Proof shortened by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin2-2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝒫 𝐴 → 𝑦 ⊆ 𝒫 𝐴 ) | |
| 2 | fin2i2 | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝑦 ⊆ 𝒫 𝐴 ) ∧ ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) ) → ∩ 𝑦 ∈ 𝑦 ) | |
| 3 | 2 | ex | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝑦 ⊆ 𝒫 𝐴 ) → ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ) |
| 4 | 1 3 | sylan2 | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝑦 ∈ 𝒫 𝒫 𝐴 ) → ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ) |
| 5 | 4 | ralrimiva | ⊢ ( 𝐴 ∈ FinII → ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ) |
| 6 | elpwi | ⊢ ( 𝑏 ∈ 𝒫 𝒫 𝐴 → 𝑏 ⊆ 𝒫 𝐴 ) | |
| 7 | simp1r | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → 𝑏 ⊆ 𝒫 𝐴 ) | |
| 8 | simp1l | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → 𝐴 ∈ 𝑉 ) | |
| 9 | simp3l | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → 𝑏 ≠ ∅ ) | |
| 10 | fin23lem7 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ∧ 𝑏 ≠ ∅ ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ≠ ∅ ) | |
| 11 | 8 7 9 10 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ≠ ∅ ) |
| 12 | sorpsscmpl | ⊢ ( [⊊] Or 𝑏 → [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) |
| 15 | neeq1 | ⊢ ( 𝑦 = { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } → ( 𝑦 ≠ ∅ ↔ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ≠ ∅ ) ) | |
| 16 | soeq2 | ⊢ ( 𝑦 = { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } → ( [⊊] Or 𝑦 ↔ [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) ) | |
| 17 | 15 16 | anbi12d | ⊢ ( 𝑦 = { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } → ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) ↔ ( { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ≠ ∅ ∧ [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) ) ) |
| 18 | inteq | ⊢ ( 𝑦 = { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } → ∩ 𝑦 = ∩ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) | |
| 19 | id | ⊢ ( 𝑦 = { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } → 𝑦 = { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) | |
| 20 | 18 19 | eleq12d | ⊢ ( 𝑦 = { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } → ( ∩ 𝑦 ∈ 𝑦 ↔ ∩ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) ) |
| 21 | 17 20 | imbi12d | ⊢ ( 𝑦 = { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } → ( ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ↔ ( ( { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ≠ ∅ ∧ [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) → ∩ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) ) ) |
| 22 | simp2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ) | |
| 23 | ssrab2 | ⊢ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ⊆ 𝒫 𝐴 | |
| 24 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 25 | elpw2g | ⊢ ( 𝒫 𝐴 ∈ V → ( { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ↔ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ⊆ 𝒫 𝐴 ) ) | |
| 26 | 8 24 25 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ( { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ↔ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ⊆ 𝒫 𝐴 ) ) |
| 27 | 23 26 | mpbiri | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ) |
| 28 | 21 22 27 | rspcdva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ( ( { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ≠ ∅ ∧ [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) → ∩ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) ) |
| 29 | 11 14 28 | mp2and | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∩ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) |
| 30 | sorpssint | ⊢ ( [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } → ( ∃ 𝑧 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ¬ 𝑤 ⊊ 𝑧 ↔ ∩ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) ) | |
| 31 | 14 30 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ( ∃ 𝑧 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ¬ 𝑤 ⊊ 𝑧 ↔ ∩ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ) ) |
| 32 | 29 31 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∃ 𝑧 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ¬ 𝑤 ⊊ 𝑧 ) |
| 33 | psseq1 | ⊢ ( 𝑚 = ( 𝐴 ∖ 𝑧 ) → ( 𝑚 ⊊ 𝑛 ↔ ( 𝐴 ∖ 𝑧 ) ⊊ 𝑛 ) ) | |
| 34 | psseq1 | ⊢ ( 𝑤 = ( 𝐴 ∖ 𝑛 ) → ( 𝑤 ⊊ 𝑧 ↔ ( 𝐴 ∖ 𝑛 ) ⊊ 𝑧 ) ) | |
| 35 | pssdifcom1 | ⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑛 ⊆ 𝐴 ) → ( ( 𝐴 ∖ 𝑧 ) ⊊ 𝑛 ↔ ( 𝐴 ∖ 𝑛 ) ⊊ 𝑧 ) ) | |
| 36 | 33 34 35 | fin23lem11 | ⊢ ( 𝑏 ⊆ 𝒫 𝐴 → ( ∃ 𝑧 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝑏 } ¬ 𝑤 ⊊ 𝑧 → ∃ 𝑚 ∈ 𝑏 ∀ 𝑛 ∈ 𝑏 ¬ 𝑚 ⊊ 𝑛 ) ) |
| 37 | 7 32 36 | sylc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∃ 𝑚 ∈ 𝑏 ∀ 𝑛 ∈ 𝑏 ¬ 𝑚 ⊊ 𝑛 ) |
| 38 | simp3r | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → [⊊] Or 𝑏 ) | |
| 39 | sorpssuni | ⊢ ( [⊊] Or 𝑏 → ( ∃ 𝑚 ∈ 𝑏 ∀ 𝑛 ∈ 𝑏 ¬ 𝑚 ⊊ 𝑛 ↔ ∪ 𝑏 ∈ 𝑏 ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ( ∃ 𝑚 ∈ 𝑏 ∀ 𝑛 ∈ 𝑏 ¬ 𝑚 ⊊ 𝑛 ↔ ∪ 𝑏 ∈ 𝑏 ) ) |
| 41 | 37 40 | mpbid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∪ 𝑏 ∈ 𝑏 ) |
| 42 | 41 | 3exp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝒫 𝐴 ) → ( ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) → ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → ∪ 𝑏 ∈ 𝑏 ) ) ) |
| 43 | 6 42 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) → ( ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) → ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → ∪ 𝑏 ∈ 𝑏 ) ) ) |
| 44 | 43 | ralrimdva | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) → ∀ 𝑏 ∈ 𝒫 𝒫 𝐴 ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → ∪ 𝑏 ∈ 𝑏 ) ) ) |
| 45 | isfin2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑏 ∈ 𝒫 𝒫 𝐴 ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → ∪ 𝑏 ∈ 𝑏 ) ) ) | |
| 46 | 44 45 | sylibrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) → 𝐴 ∈ FinII ) ) |
| 47 | 5 46 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∩ 𝑦 ∈ 𝑦 ) ) ) |