This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a chain of sets, a minimal element is the intersection of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sorpssint | ⊢ ( [⊊] Or 𝑌 → ( ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ↔ ∩ 𝑌 ∈ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 | ⊢ ( 𝑢 ∈ 𝑌 → ∩ 𝑌 ⊆ 𝑢 ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → ∩ 𝑌 ⊆ 𝑢 ) |
| 3 | sorpssi | ⊢ ( ( [⊊] Or 𝑌 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) | |
| 4 | 3 | anassrs | ⊢ ( ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ 𝑣 ∈ 𝑌 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 5 | sspss | ⊢ ( 𝑣 ⊆ 𝑢 ↔ ( 𝑣 ⊊ 𝑢 ∨ 𝑣 = 𝑢 ) ) | |
| 6 | orel1 | ⊢ ( ¬ 𝑣 ⊊ 𝑢 → ( ( 𝑣 ⊊ 𝑢 ∨ 𝑣 = 𝑢 ) → 𝑣 = 𝑢 ) ) | |
| 7 | eqimss2 | ⊢ ( 𝑣 = 𝑢 → 𝑢 ⊆ 𝑣 ) | |
| 8 | 6 7 | syl6com | ⊢ ( ( 𝑣 ⊊ 𝑢 ∨ 𝑣 = 𝑢 ) → ( ¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣 ) ) |
| 9 | 5 8 | sylbi | ⊢ ( 𝑣 ⊆ 𝑢 → ( ¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣 ) ) |
| 10 | 9 | jao1i | ⊢ ( ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) → ( ¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣 ) ) |
| 11 | 4 10 | syl | ⊢ ( ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ 𝑣 ∈ 𝑌 ) → ( ¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣 ) ) |
| 12 | 11 | ralimdva | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) → ( ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 → ∀ 𝑣 ∈ 𝑌 𝑢 ⊆ 𝑣 ) ) |
| 13 | 12 | 3impia | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → ∀ 𝑣 ∈ 𝑌 𝑢 ⊆ 𝑣 ) |
| 14 | ssint | ⊢ ( 𝑢 ⊆ ∩ 𝑌 ↔ ∀ 𝑣 ∈ 𝑌 𝑢 ⊆ 𝑣 ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → 𝑢 ⊆ ∩ 𝑌 ) |
| 16 | 2 15 | eqssd | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → ∩ 𝑌 = 𝑢 ) |
| 17 | simp2 | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → 𝑢 ∈ 𝑌 ) | |
| 18 | 16 17 | eqeltrd | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) → ∩ 𝑌 ∈ 𝑌 ) |
| 19 | 18 | rexlimdv3a | ⊢ ( [⊊] Or 𝑌 → ( ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 → ∩ 𝑌 ∈ 𝑌 ) ) |
| 20 | intss1 | ⊢ ( 𝑣 ∈ 𝑌 → ∩ 𝑌 ⊆ 𝑣 ) | |
| 21 | ssnpss | ⊢ ( ∩ 𝑌 ⊆ 𝑣 → ¬ 𝑣 ⊊ ∩ 𝑌 ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑣 ∈ 𝑌 → ¬ 𝑣 ⊊ ∩ 𝑌 ) |
| 23 | 22 | rgen | ⊢ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ ∩ 𝑌 |
| 24 | psseq2 | ⊢ ( 𝑢 = ∩ 𝑌 → ( 𝑣 ⊊ 𝑢 ↔ 𝑣 ⊊ ∩ 𝑌 ) ) | |
| 25 | 24 | notbid | ⊢ ( 𝑢 = ∩ 𝑌 → ( ¬ 𝑣 ⊊ 𝑢 ↔ ¬ 𝑣 ⊊ ∩ 𝑌 ) ) |
| 26 | 25 | ralbidv | ⊢ ( 𝑢 = ∩ 𝑌 → ( ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ↔ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ ∩ 𝑌 ) ) |
| 27 | 26 | rspcev | ⊢ ( ( ∩ 𝑌 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ ∩ 𝑌 ) → ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) |
| 28 | 23 27 | mpan2 | ⊢ ( ∩ 𝑌 ∈ 𝑌 → ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ) |
| 29 | 19 28 | impbid1 | ⊢ ( [⊊] Or 𝑌 → ( ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ↔ ∩ 𝑌 ∈ 𝑌 ) ) |