This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The componentwise complement of a chain of sets is also a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sorpsscmpl | ⊢ ( [⊊] Or 𝑌 → [⊊] Or { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 | ⊢ ( 𝑢 = 𝑥 → ( 𝐴 ∖ 𝑢 ) = ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 ↔ ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ) ) |
| 3 | 2 | elrab | ⊢ ( 𝑥 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ) ) |
| 4 | difeq2 | ⊢ ( 𝑢 = 𝑦 → ( 𝐴 ∖ 𝑢 ) = ( 𝐴 ∖ 𝑦 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑢 = 𝑦 → ( ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 ↔ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) ) |
| 6 | 5 | elrab | ⊢ ( 𝑦 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) ) |
| 7 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) ) ↔ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ) ∧ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) ) ) | |
| 8 | 7 | biimpi | ⊢ ( ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) ) → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ) ∧ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) ) ) |
| 9 | 3 6 8 | syl2anb | ⊢ ( ( 𝑥 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ∧ 𝑦 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ) → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ) ∧ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) ) ) |
| 10 | sorpssi | ⊢ ( ( [⊊] Or 𝑌 ∧ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) ) → ( ( 𝐴 ∖ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) ∨ ( 𝐴 ∖ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑥 ) ) ) | |
| 11 | 10 | expcom | ⊢ ( ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) → ( [⊊] Or 𝑌 → ( ( 𝐴 ∖ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) ∨ ( 𝐴 ∖ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑥 ) ) ) ) |
| 12 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 13 | dfss4 | ⊢ ( 𝑥 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) | |
| 14 | 12 13 | bitri | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) |
| 15 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) | |
| 16 | dfss4 | ⊢ ( 𝑦 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) | |
| 17 | 15 16 | bitri | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) |
| 18 | sscon | ⊢ ( ( 𝐴 ∖ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑥 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ) | |
| 19 | sseq12 | ⊢ ( ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ∧ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) → ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ↔ 𝑥 ⊆ 𝑦 ) ) | |
| 20 | 18 19 | imbitrid | ⊢ ( ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ∧ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) → ( ( 𝐴 ∖ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑥 ) → 𝑥 ⊆ 𝑦 ) ) |
| 21 | sscon | ⊢ ( ( 𝐴 ∖ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ) | |
| 22 | sseq12 | ⊢ ( ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ∧ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ) → ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ↔ 𝑦 ⊆ 𝑥 ) ) | |
| 23 | 22 | ancoms | ⊢ ( ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ∧ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) → ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) ↔ 𝑦 ⊆ 𝑥 ) ) |
| 24 | 21 23 | imbitrid | ⊢ ( ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ∧ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) → ( ( 𝐴 ∖ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) → 𝑦 ⊆ 𝑥 ) ) |
| 25 | 20 24 | orim12d | ⊢ ( ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑥 ) ) = 𝑥 ∧ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) → ( ( ( 𝐴 ∖ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑥 ) ∨ ( 𝐴 ∖ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) ) |
| 26 | 14 17 25 | syl2anb | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ) → ( ( ( 𝐴 ∖ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑥 ) ∨ ( 𝐴 ∖ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) ) |
| 27 | 26 | com12 | ⊢ ( ( ( 𝐴 ∖ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑥 ) ∨ ( 𝐴 ∖ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) ) → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) ) |
| 28 | 27 | orcoms | ⊢ ( ( ( 𝐴 ∖ 𝑥 ) ⊆ ( 𝐴 ∖ 𝑦 ) ∨ ( 𝐴 ∖ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑥 ) ) → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) ) |
| 29 | 11 28 | syl6 | ⊢ ( ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) → ( [⊊] Or 𝑌 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) ) ) |
| 30 | 29 | com3l | ⊢ ( [⊊] Or 𝑌 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ) → ( ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) ) ) |
| 31 | 30 | impd | ⊢ ( [⊊] Or 𝑌 → ( ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ) ∧ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑌 ∧ ( 𝐴 ∖ 𝑦 ) ∈ 𝑌 ) ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) ) |
| 32 | 9 31 | syl5 | ⊢ ( [⊊] Or 𝑌 → ( ( 𝑥 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ∧ 𝑦 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) ) |
| 33 | 32 | ralrimivv | ⊢ ( [⊊] Or 𝑌 → ∀ 𝑥 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ∀ 𝑦 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) |
| 34 | sorpss | ⊢ ( [⊊] Or { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ↔ ∀ 𝑥 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ∀ 𝑦 ∈ { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) | |
| 35 | 33 34 | sylibr | ⊢ ( [⊊] Or 𝑌 → [⊊] Or { 𝑢 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑢 ) ∈ 𝑌 } ) |