This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfin2 | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ FinII ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝐴 ∈ FinII ) | |
| 2 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝒫 𝐵 → 𝑥 ⊆ 𝒫 𝐵 ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝑥 ⊆ 𝒫 𝐵 ) |
| 4 | simplr | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝐵 ⊆ 𝐴 ) | |
| 5 | 4 | sspwd | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝒫 𝐵 ⊆ 𝒫 𝐴 ) |
| 6 | 3 5 | sstrd | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝑥 ⊆ 𝒫 𝐴 ) |
| 7 | fin2i | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴 ) ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → ∪ 𝑥 ∈ 𝑥 ) | |
| 8 | 7 | ex | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴 ) → ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
| 9 | 1 6 8 | syl2anc | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
| 10 | 9 | ralrimiva | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
| 11 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ FinII ) → 𝐵 ∈ V ) | |
| 12 | 11 | ancoms | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 13 | isfin2 | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ FinII ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∈ FinII ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
| 15 | 10 14 | mpbird | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ FinII ) |