This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pssdifcom1 | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐶 ∖ 𝐴 ) ⊊ 𝐵 ↔ ( 𝐶 ∖ 𝐵 ) ⊊ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difcom | ⊢ ( ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ↔ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ↔ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) ) |
| 3 | ssconb | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶 ) → ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |
| 5 | 4 | notbid | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ¬ 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ↔ ¬ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |
| 6 | 2 5 | anbi12d | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ) ↔ ( ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) ) |
| 7 | dfpss3 | ⊢ ( ( 𝐶 ∖ 𝐴 ) ⊊ 𝐵 ↔ ( ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ) ) | |
| 8 | dfpss3 | ⊢ ( ( 𝐶 ∖ 𝐵 ) ⊊ 𝐴 ↔ ( ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) | |
| 9 | 6 7 8 | 3bitr4g | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐶 ∖ 𝐴 ) ⊊ 𝐵 ↔ ( 𝐶 ∖ 𝐵 ) ⊊ 𝐴 ) ) |