This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin2-2 . The componentwise complement of a nonempty collection of sets is nonempty. (Contributed by Stefan O'Rear, 31-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin23lem7 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 } ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) | |
| 2 | difss | ⊢ ( 𝐴 ∖ 𝑦 ) ⊆ 𝐴 | |
| 3 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ 𝑦 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑦 ) ⊆ 𝐴 ) ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ∖ 𝑦 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑦 ) ⊆ 𝐴 ) ) |
| 5 | 2 4 | mpbiri | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑦 ) ∈ 𝒫 𝐴 ) |
| 6 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → 𝐵 ⊆ 𝒫 𝐴 ) | |
| 7 | 6 | sselda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝒫 𝐴 ) |
| 8 | 7 | elpwid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ 𝐴 ) |
| 9 | dfss4 | ⊢ ( 𝑦 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) | |
| 10 | 8 9 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) |
| 11 | simpr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 12 | 10 11 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ∈ 𝐵 ) |
| 13 | difeq2 | ⊢ ( 𝑥 = ( 𝐴 ∖ 𝑦 ) → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑥 = ( 𝐴 ∖ 𝑦 ) → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ∈ 𝐵 ) ) |
| 15 | 14 | rspcev | ⊢ ( ( ( 𝐴 ∖ 𝑦 ) ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
| 16 | 5 12 15 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
| 17 | 16 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
| 18 | 17 | exlimdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ∃ 𝑦 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
| 19 | 1 18 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( 𝐵 ≠ ∅ → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
| 20 | 19 | 3impia | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
| 21 | rabn0 | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 } ≠ ∅ ) |