This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A II-finite set contains minimal elements for every nonempty chain. (Contributed by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin2i2 | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∩ 𝐵 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → 𝐵 ⊆ 𝒫 𝐴 ) | |
| 2 | simpll | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → 𝐴 ∈ FinII ) | |
| 3 | ssrab2 | ⊢ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ⊆ 𝒫 𝐴 | |
| 4 | 3 | a1i | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ⊆ 𝒫 𝐴 ) |
| 5 | simprl | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → 𝐵 ≠ ∅ ) | |
| 6 | fin23lem7 | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ∧ 𝐵 ≠ ∅ ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ≠ ∅ ) | |
| 7 | 2 1 5 6 | syl3anc | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ≠ ∅ ) |
| 8 | sorpsscmpl | ⊢ ( [⊊] Or 𝐵 → [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) | |
| 9 | 8 | ad2antll | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) |
| 10 | fin2i | ⊢ ( ( ( 𝐴 ∈ FinII ∧ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ⊆ 𝒫 𝐴 ) ∧ ( { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ≠ ∅ ∧ [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) ) → ∪ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) | |
| 11 | 2 4 7 9 10 | syl22anc | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∪ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) |
| 12 | sorpssuni | ⊢ ( [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } → ( ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝑚 ⊊ 𝑛 ↔ ∪ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) ) | |
| 13 | 9 12 | syl | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ( ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝑚 ⊊ 𝑛 ↔ ∪ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) ) |
| 14 | 11 13 | mpbird | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝑚 ⊊ 𝑛 ) |
| 15 | psseq2 | ⊢ ( 𝑧 = ( 𝐴 ∖ 𝑚 ) → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ ( 𝐴 ∖ 𝑚 ) ) ) | |
| 16 | psseq2 | ⊢ ( 𝑛 = ( 𝐴 ∖ 𝑤 ) → ( 𝑚 ⊊ 𝑛 ↔ 𝑚 ⊊ ( 𝐴 ∖ 𝑤 ) ) ) | |
| 17 | pssdifcom2 | ⊢ ( ( 𝑚 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝐴 ) → ( 𝑤 ⊊ ( 𝐴 ∖ 𝑚 ) ↔ 𝑚 ⊊ ( 𝐴 ∖ 𝑤 ) ) ) | |
| 18 | 15 16 17 | fin23lem11 | ⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝑚 ⊊ 𝑛 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 ⊊ 𝑧 ) ) |
| 19 | 1 14 18 | sylc | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 ⊊ 𝑧 ) |
| 20 | sorpssint | ⊢ ( [⊊] Or 𝐵 → ( ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 ⊊ 𝑧 ↔ ∩ 𝐵 ∈ 𝐵 ) ) | |
| 21 | 20 | ad2antll | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 ⊊ 𝑧 ↔ ∩ 𝐵 ∈ 𝐵 ) ) |
| 22 | 19 21 | mpbid | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∩ 𝐵 ∈ 𝐵 ) |