This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin2-2 . (Contributed by Stefan O'Rear, 31-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem11.1 | ⊢ ( 𝑧 = ( 𝐴 ∖ 𝑥 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| fin23lem11.2 | ⊢ ( 𝑤 = ( 𝐴 ∖ 𝑣 ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| fin23lem11.3 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑣 ⊆ 𝐴 ) → ( 𝜒 ↔ 𝜃 ) ) | ||
| Assertion | fin23lem11 | ⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( ∃ 𝑥 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem11.1 | ⊢ ( 𝑧 = ( 𝐴 ∖ 𝑥 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | fin23lem11.2 | ⊢ ( 𝑤 = ( 𝐴 ∖ 𝑣 ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 3 | fin23lem11.3 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑣 ⊆ 𝐴 ) → ( 𝜒 ↔ 𝜃 ) ) | |
| 4 | difeq2 | ⊢ ( 𝑐 = 𝑥 → ( 𝐴 ∖ 𝑐 ) = ( 𝐴 ∖ 𝑥 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑐 = 𝑥 → ( ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 ↔ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
| 6 | 5 | elrab | ⊢ ( 𝑥 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
| 7 | simp2r | ⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) | |
| 8 | 2 | notbid | ⊢ ( 𝑤 = ( 𝐴 ∖ 𝑣 ) → ( ¬ 𝜑 ↔ ¬ 𝜃 ) ) |
| 9 | simpl3 | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) | |
| 10 | difeq2 | ⊢ ( 𝑐 = ( 𝐴 ∖ 𝑣 ) → ( 𝐴 ∖ 𝑐 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑐 = ( 𝐴 ∖ 𝑣 ) → ( ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) ∈ 𝐵 ) ) |
| 12 | difss | ⊢ ( 𝐴 ∖ 𝑣 ) ⊆ 𝐴 | |
| 13 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝑥 ) | |
| 14 | undif1 | ⊢ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) = ( 𝐴 ∪ 𝑥 ) | |
| 15 | 13 14 | sseqtrri | ⊢ 𝐴 ⊆ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) |
| 16 | simpl2r | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) | |
| 17 | simpl2l | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑥 ∈ 𝒫 𝐴 ) | |
| 18 | unexg | ⊢ ( ( ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∈ V ) | |
| 19 | 16 17 18 | syl2anc | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∈ V ) |
| 20 | ssexg | ⊢ ( ( 𝐴 ⊆ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∧ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∈ V ) → 𝐴 ∈ V ) | |
| 21 | 15 19 20 | sylancr | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝐴 ∈ V ) |
| 22 | elpw2g | ⊢ ( 𝐴 ∈ V → ( ( 𝐴 ∖ 𝑣 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑣 ) ⊆ 𝐴 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝐴 ∖ 𝑣 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑣 ) ⊆ 𝐴 ) ) |
| 24 | 12 23 | mpbiri | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑣 ) ∈ 𝒫 𝐴 ) |
| 25 | simpl1 | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝐵 ⊆ 𝒫 𝐴 ) | |
| 26 | simpr | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝐵 ) | |
| 27 | 25 26 | sseldd | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝒫 𝐴 ) |
| 28 | 27 | elpwid | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ⊆ 𝐴 ) |
| 29 | dfss4 | ⊢ ( 𝑣 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) = 𝑣 ) | |
| 30 | 28 29 | sylib | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) = 𝑣 ) |
| 31 | 30 26 | eqeltrd | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) ∈ 𝐵 ) |
| 32 | 11 24 31 | elrabd | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑣 ) ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) |
| 33 | 8 9 32 | rspcdva | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ¬ 𝜃 ) |
| 34 | simplrl | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑥 ∈ 𝒫 𝐴 ) | |
| 35 | 34 | elpwid | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑥 ⊆ 𝐴 ) |
| 36 | ssel2 | ⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝒫 𝐴 ) | |
| 37 | 36 | adantlr | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝒫 𝐴 ) |
| 38 | 37 | elpwid | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ⊆ 𝐴 ) |
| 39 | 35 38 3 | syl2anc | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝜒 ↔ 𝜃 ) ) |
| 40 | 39 | notbid | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → ( ¬ 𝜒 ↔ ¬ 𝜃 ) ) |
| 41 | 40 | 3adantl3 | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( ¬ 𝜒 ↔ ¬ 𝜃 ) ) |
| 42 | 33 41 | mpbird | ⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ¬ 𝜒 ) |
| 43 | 42 | ralrimiva | ⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) → ∀ 𝑣 ∈ 𝐵 ¬ 𝜒 ) |
| 44 | 1 | notbid | ⊢ ( 𝑧 = ( 𝐴 ∖ 𝑥 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
| 45 | 44 | ralbidv | ⊢ ( 𝑧 = ( 𝐴 ∖ 𝑥 ) → ( ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ↔ ∀ 𝑣 ∈ 𝐵 ¬ 𝜒 ) ) |
| 46 | 45 | rspcev | ⊢ ( ( ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑣 ∈ 𝐵 ¬ 𝜒 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) |
| 47 | 7 43 46 | syl2anc | ⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) |
| 48 | 47 | 3exp | ⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) → ( ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) ) ) |
| 49 | 6 48 | biimtrid | ⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( 𝑥 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } → ( ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) ) ) |
| 50 | 49 | rexlimdv | ⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( ∃ 𝑥 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) ) |