This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sorpssuni | ⊢ ( [⊊] Or 𝑌 → ( ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ↔ ∪ 𝑌 ∈ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sorpssi | ⊢ ( ( [⊊] Or 𝑌 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) | |
| 2 | 1 | anassrs | ⊢ ( ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ 𝑣 ∈ 𝑌 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 3 | sspss | ⊢ ( 𝑢 ⊆ 𝑣 ↔ ( 𝑢 ⊊ 𝑣 ∨ 𝑢 = 𝑣 ) ) | |
| 4 | orel1 | ⊢ ( ¬ 𝑢 ⊊ 𝑣 → ( ( 𝑢 ⊊ 𝑣 ∨ 𝑢 = 𝑣 ) → 𝑢 = 𝑣 ) ) | |
| 5 | eqimss2 | ⊢ ( 𝑢 = 𝑣 → 𝑣 ⊆ 𝑢 ) | |
| 6 | 4 5 | syl6com | ⊢ ( ( 𝑢 ⊊ 𝑣 ∨ 𝑢 = 𝑣 ) → ( ¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢 ) ) |
| 7 | 3 6 | sylbi | ⊢ ( 𝑢 ⊆ 𝑣 → ( ¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢 ) ) |
| 8 | ax-1 | ⊢ ( 𝑣 ⊆ 𝑢 → ( ¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢 ) ) | |
| 9 | 7 8 | jaoi | ⊢ ( ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) → ( ¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢 ) ) |
| 10 | 2 9 | syl | ⊢ ( ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ 𝑣 ∈ 𝑌 ) → ( ¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢 ) ) |
| 11 | 10 | ralimdva | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) → ( ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 → ∀ 𝑣 ∈ 𝑌 𝑣 ⊆ 𝑢 ) ) |
| 12 | 11 | 3impia | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → ∀ 𝑣 ∈ 𝑌 𝑣 ⊆ 𝑢 ) |
| 13 | unissb | ⊢ ( ∪ 𝑌 ⊆ 𝑢 ↔ ∀ 𝑣 ∈ 𝑌 𝑣 ⊆ 𝑢 ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → ∪ 𝑌 ⊆ 𝑢 ) |
| 15 | elssuni | ⊢ ( 𝑢 ∈ 𝑌 → 𝑢 ⊆ ∪ 𝑌 ) | |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → 𝑢 ⊆ ∪ 𝑌 ) |
| 17 | 14 16 | eqssd | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → ∪ 𝑌 = 𝑢 ) |
| 18 | simp2 | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → 𝑢 ∈ 𝑌 ) | |
| 19 | 17 18 | eqeltrd | ⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → ∪ 𝑌 ∈ 𝑌 ) |
| 20 | 19 | rexlimdv3a | ⊢ ( [⊊] Or 𝑌 → ( ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 → ∪ 𝑌 ∈ 𝑌 ) ) |
| 21 | elssuni | ⊢ ( 𝑣 ∈ 𝑌 → 𝑣 ⊆ ∪ 𝑌 ) | |
| 22 | ssnpss | ⊢ ( 𝑣 ⊆ ∪ 𝑌 → ¬ ∪ 𝑌 ⊊ 𝑣 ) | |
| 23 | 21 22 | syl | ⊢ ( 𝑣 ∈ 𝑌 → ¬ ∪ 𝑌 ⊊ 𝑣 ) |
| 24 | 23 | rgen | ⊢ ∀ 𝑣 ∈ 𝑌 ¬ ∪ 𝑌 ⊊ 𝑣 |
| 25 | psseq1 | ⊢ ( 𝑢 = ∪ 𝑌 → ( 𝑢 ⊊ 𝑣 ↔ ∪ 𝑌 ⊊ 𝑣 ) ) | |
| 26 | 25 | notbid | ⊢ ( 𝑢 = ∪ 𝑌 → ( ¬ 𝑢 ⊊ 𝑣 ↔ ¬ ∪ 𝑌 ⊊ 𝑣 ) ) |
| 27 | 26 | ralbidv | ⊢ ( 𝑢 = ∪ 𝑌 → ( ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ↔ ∀ 𝑣 ∈ 𝑌 ¬ ∪ 𝑌 ⊊ 𝑣 ) ) |
| 28 | 27 | rspcev | ⊢ ( ( ∪ 𝑌 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ ∪ 𝑌 ⊊ 𝑣 ) → ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) |
| 29 | 24 28 | mpan2 | ⊢ ( ∪ 𝑌 ∈ 𝑌 → ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) |
| 30 | 20 29 | impbid1 | ⊢ ( [⊊] Or 𝑌 → ( ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ↔ ∪ 𝑌 ∈ 𝑌 ) ) |