This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a domain iff it is nonzero and the left cancellation law for multiplication holds. (Contributed by SN, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn4.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdomn4.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| isdomn4.x | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | isdomn4 | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn4.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdomn4.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | isdomn4.x | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | domnnzr | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) | |
| 5 | eqid | ⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) | |
| 6 | domnring | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 8 | eldifi | ⊢ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) → 𝑎 ∈ 𝐵 ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
| 11 | simpr2 | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) | |
| 12 | simpr3 | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑐 ∈ 𝐵 ) | |
| 13 | 1 3 5 7 10 11 12 | ringsubdi | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) ( -g ‘ 𝑅 ) ( 𝑎 · 𝑐 ) ) ) |
| 14 | 13 | eqeq1d | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) = 0 ↔ ( ( 𝑎 · 𝑏 ) ( -g ‘ 𝑅 ) ( 𝑎 · 𝑐 ) ) = 0 ) ) |
| 15 | simpll | ⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → 𝑅 ∈ Domn ) | |
| 16 | 10 | adantr | ⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → 𝑎 ∈ 𝐵 ) |
| 17 | eldifsni | ⊢ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) → 𝑎 ≠ 0 ) | |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → 𝑎 ≠ 0 ) |
| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → 𝑎 ≠ 0 ) |
| 20 | 6 | ringgrpd | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Grp ) |
| 21 | 1 5 | grpsubcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐵 ) |
| 22 | 20 21 | syl3an1 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐵 ) |
| 23 | 22 | 3adant3r1 | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐵 ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐵 ) |
| 25 | simpr | ⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) | |
| 26 | 1 3 2 | domnmuln0 | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ≠ 0 ) ∧ ( ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐵 ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) ) → ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) ≠ 0 ) |
| 27 | 15 16 19 24 25 26 | syl122anc | ⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) ≠ 0 ) |
| 28 | 27 | ex | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 → ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) ≠ 0 ) ) |
| 29 | 28 | necon4d | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) = 0 → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) = 0 ) ) |
| 30 | 14 29 | sylbird | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( ( 𝑎 · 𝑏 ) ( -g ‘ 𝑅 ) ( 𝑎 · 𝑐 ) ) = 0 → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) = 0 ) ) |
| 31 | 20 | adantr | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑅 ∈ Grp ) |
| 32 | id | ⊢ ( 𝑏 ∈ 𝐵 → 𝑏 ∈ 𝐵 ) | |
| 33 | 1 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 34 | 6 8 32 33 | syl3an | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 35 | 34 | 3adant3r3 | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 36 | id | ⊢ ( 𝑐 ∈ 𝐵 → 𝑐 ∈ 𝐵 ) | |
| 37 | 1 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( 𝑎 · 𝑐 ) ∈ 𝐵 ) |
| 38 | 6 8 36 37 | syl3an | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑐 ∈ 𝐵 ) → ( 𝑎 · 𝑐 ) ∈ 𝐵 ) |
| 39 | 38 | 3adant3r2 | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑎 · 𝑐 ) ∈ 𝐵 ) |
| 40 | 1 2 5 | grpsubeq0 | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑎 · 𝑏 ) ∈ 𝐵 ∧ ( 𝑎 · 𝑐 ) ∈ 𝐵 ) → ( ( ( 𝑎 · 𝑏 ) ( -g ‘ 𝑅 ) ( 𝑎 · 𝑐 ) ) = 0 ↔ ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) ) ) |
| 41 | 31 35 39 40 | syl3anc | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( ( 𝑎 · 𝑏 ) ( -g ‘ 𝑅 ) ( 𝑎 · 𝑐 ) ) = 0 ↔ ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) ) ) |
| 42 | 1 2 5 | grpsubeq0 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) = 0 ↔ 𝑏 = 𝑐 ) ) |
| 43 | 31 11 12 42 | syl3anc | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) = 0 ↔ 𝑏 = 𝑐 ) ) |
| 44 | 30 41 43 | 3imtr3d | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) |
| 45 | 44 | ralrimivvva | ⊢ ( 𝑅 ∈ Domn → ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) |
| 46 | 4 45 | jca | ⊢ ( 𝑅 ∈ Domn → ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |
| 47 | nzrring | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) | |
| 48 | 47 | ringgrpd | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Grp ) |
| 49 | 1 2 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 50 | 48 49 | syl | ⊢ ( 𝑅 ∈ NzRing → 0 ∈ 𝐵 ) |
| 51 | 50 | adantr | ⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → 0 ∈ 𝐵 ) |
| 52 | oveq2 | ⊢ ( 𝑐 = 0 → ( 𝑎 · 𝑐 ) = ( 𝑎 · 0 ) ) | |
| 53 | 52 | eqeq2d | ⊢ ( 𝑐 = 0 → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) ↔ ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) ) ) |
| 54 | eqeq2 | ⊢ ( 𝑐 = 0 → ( 𝑏 = 𝑐 ↔ 𝑏 = 0 ) ) | |
| 55 | 53 54 | imbi12d | ⊢ ( 𝑐 = 0 → ( ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ↔ ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) → 𝑏 = 0 ) ) ) |
| 56 | 55 | rspcv | ⊢ ( 0 ∈ 𝐵 → ( ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) → 𝑏 = 0 ) ) ) |
| 57 | 51 56 | syl | ⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) → 𝑏 = 0 ) ) ) |
| 58 | 1 3 2 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 · 0 ) = 0 ) |
| 59 | 47 8 58 | syl2an | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑎 · 0 ) = 0 ) |
| 60 | 59 | adantrr | ⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 0 ) = 0 ) |
| 61 | 60 | eqeq2d | ⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) ↔ ( 𝑎 · 𝑏 ) = 0 ) ) |
| 62 | 61 | imbi1d | ⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) → 𝑏 = 0 ) ↔ ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
| 63 | 57 62 | sylibd | ⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
| 64 | 63 | ralimdvva | ⊢ ( 𝑅 ∈ NzRing → ( ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) → ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
| 65 | isdomn5 | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) | |
| 66 | 64 65 | imbitrrdi | ⊢ ( 𝑅 ∈ NzRing → ( ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ) ) |
| 67 | 66 | imdistani | ⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) → ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ) ) |
| 68 | 1 3 2 | isdomn | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ) ) |
| 69 | 67 68 | sylibr | ⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) → 𝑅 ∈ Domn ) |
| 70 | 46 69 | impbii | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |