This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a domain iff it is nonzero and the left cancellation law for multiplication holds. (Contributed by SN, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn4.b | |- B = ( Base ` R ) |
|
| isdomn4.0 | |- .0. = ( 0g ` R ) |
||
| isdomn4.x | |- .x. = ( .r ` R ) |
||
| Assertion | isdomn4 | |- ( R e. Domn <-> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn4.b | |- B = ( Base ` R ) |
|
| 2 | isdomn4.0 | |- .0. = ( 0g ` R ) |
|
| 3 | isdomn4.x | |- .x. = ( .r ` R ) |
|
| 4 | domnnzr | |- ( R e. Domn -> R e. NzRing ) |
|
| 5 | eqid | |- ( -g ` R ) = ( -g ` R ) |
|
| 6 | domnring | |- ( R e. Domn -> R e. Ring ) |
|
| 7 | 6 | adantr | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> R e. Ring ) |
| 8 | eldifi | |- ( a e. ( B \ { .0. } ) -> a e. B ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) -> a e. B ) |
| 10 | 9 | adantl | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> a e. B ) |
| 11 | simpr2 | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> b e. B ) |
|
| 12 | simpr3 | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> c e. B ) |
|
| 13 | 1 3 5 7 10 11 12 | ringsubdi | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( a .x. ( b ( -g ` R ) c ) ) = ( ( a .x. b ) ( -g ` R ) ( a .x. c ) ) ) |
| 14 | 13 | eqeq1d | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( a .x. ( b ( -g ` R ) c ) ) = .0. <-> ( ( a .x. b ) ( -g ` R ) ( a .x. c ) ) = .0. ) ) |
| 15 | simpll | |- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> R e. Domn ) |
|
| 16 | 10 | adantr | |- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> a e. B ) |
| 17 | eldifsni | |- ( a e. ( B \ { .0. } ) -> a =/= .0. ) |
|
| 18 | 17 | 3ad2ant1 | |- ( ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) -> a =/= .0. ) |
| 19 | 18 | ad2antlr | |- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> a =/= .0. ) |
| 20 | 6 | ringgrpd | |- ( R e. Domn -> R e. Grp ) |
| 21 | 1 5 | grpsubcl | |- ( ( R e. Grp /\ b e. B /\ c e. B ) -> ( b ( -g ` R ) c ) e. B ) |
| 22 | 20 21 | syl3an1 | |- ( ( R e. Domn /\ b e. B /\ c e. B ) -> ( b ( -g ` R ) c ) e. B ) |
| 23 | 22 | 3adant3r1 | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( b ( -g ` R ) c ) e. B ) |
| 24 | 23 | adantr | |- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> ( b ( -g ` R ) c ) e. B ) |
| 25 | simpr | |- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> ( b ( -g ` R ) c ) =/= .0. ) |
|
| 26 | 1 3 2 | domnmuln0 | |- ( ( R e. Domn /\ ( a e. B /\ a =/= .0. ) /\ ( ( b ( -g ` R ) c ) e. B /\ ( b ( -g ` R ) c ) =/= .0. ) ) -> ( a .x. ( b ( -g ` R ) c ) ) =/= .0. ) |
| 27 | 15 16 19 24 25 26 | syl122anc | |- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> ( a .x. ( b ( -g ` R ) c ) ) =/= .0. ) |
| 28 | 27 | ex | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( b ( -g ` R ) c ) =/= .0. -> ( a .x. ( b ( -g ` R ) c ) ) =/= .0. ) ) |
| 29 | 28 | necon4d | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( a .x. ( b ( -g ` R ) c ) ) = .0. -> ( b ( -g ` R ) c ) = .0. ) ) |
| 30 | 14 29 | sylbird | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( ( a .x. b ) ( -g ` R ) ( a .x. c ) ) = .0. -> ( b ( -g ` R ) c ) = .0. ) ) |
| 31 | 20 | adantr | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> R e. Grp ) |
| 32 | id | |- ( b e. B -> b e. B ) |
|
| 33 | 1 3 | ringcl | |- ( ( R e. Ring /\ a e. B /\ b e. B ) -> ( a .x. b ) e. B ) |
| 34 | 6 8 32 33 | syl3an | |- ( ( R e. Domn /\ a e. ( B \ { .0. } ) /\ b e. B ) -> ( a .x. b ) e. B ) |
| 35 | 34 | 3adant3r3 | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( a .x. b ) e. B ) |
| 36 | id | |- ( c e. B -> c e. B ) |
|
| 37 | 1 3 | ringcl | |- ( ( R e. Ring /\ a e. B /\ c e. B ) -> ( a .x. c ) e. B ) |
| 38 | 6 8 36 37 | syl3an | |- ( ( R e. Domn /\ a e. ( B \ { .0. } ) /\ c e. B ) -> ( a .x. c ) e. B ) |
| 39 | 38 | 3adant3r2 | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( a .x. c ) e. B ) |
| 40 | 1 2 5 | grpsubeq0 | |- ( ( R e. Grp /\ ( a .x. b ) e. B /\ ( a .x. c ) e. B ) -> ( ( ( a .x. b ) ( -g ` R ) ( a .x. c ) ) = .0. <-> ( a .x. b ) = ( a .x. c ) ) ) |
| 41 | 31 35 39 40 | syl3anc | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( ( a .x. b ) ( -g ` R ) ( a .x. c ) ) = .0. <-> ( a .x. b ) = ( a .x. c ) ) ) |
| 42 | 1 2 5 | grpsubeq0 | |- ( ( R e. Grp /\ b e. B /\ c e. B ) -> ( ( b ( -g ` R ) c ) = .0. <-> b = c ) ) |
| 43 | 31 11 12 42 | syl3anc | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( b ( -g ` R ) c ) = .0. <-> b = c ) ) |
| 44 | 30 41 43 | 3imtr3d | |- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) |
| 45 | 44 | ralrimivvva | |- ( R e. Domn -> A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) |
| 46 | 4 45 | jca | |- ( R e. Domn -> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |
| 47 | nzrring | |- ( R e. NzRing -> R e. Ring ) |
|
| 48 | 47 | ringgrpd | |- ( R e. NzRing -> R e. Grp ) |
| 49 | 1 2 | grpidcl | |- ( R e. Grp -> .0. e. B ) |
| 50 | 48 49 | syl | |- ( R e. NzRing -> .0. e. B ) |
| 51 | 50 | adantr | |- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> .0. e. B ) |
| 52 | oveq2 | |- ( c = .0. -> ( a .x. c ) = ( a .x. .0. ) ) |
|
| 53 | 52 | eqeq2d | |- ( c = .0. -> ( ( a .x. b ) = ( a .x. c ) <-> ( a .x. b ) = ( a .x. .0. ) ) ) |
| 54 | eqeq2 | |- ( c = .0. -> ( b = c <-> b = .0. ) ) |
|
| 55 | 53 54 | imbi12d | |- ( c = .0. -> ( ( ( a .x. b ) = ( a .x. c ) -> b = c ) <-> ( ( a .x. b ) = ( a .x. .0. ) -> b = .0. ) ) ) |
| 56 | 55 | rspcv | |- ( .0. e. B -> ( A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) -> ( ( a .x. b ) = ( a .x. .0. ) -> b = .0. ) ) ) |
| 57 | 51 56 | syl | |- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> ( A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) -> ( ( a .x. b ) = ( a .x. .0. ) -> b = .0. ) ) ) |
| 58 | 1 3 2 | ringrz | |- ( ( R e. Ring /\ a e. B ) -> ( a .x. .0. ) = .0. ) |
| 59 | 47 8 58 | syl2an | |- ( ( R e. NzRing /\ a e. ( B \ { .0. } ) ) -> ( a .x. .0. ) = .0. ) |
| 60 | 59 | adantrr | |- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> ( a .x. .0. ) = .0. ) |
| 61 | 60 | eqeq2d | |- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> ( ( a .x. b ) = ( a .x. .0. ) <-> ( a .x. b ) = .0. ) ) |
| 62 | 61 | imbi1d | |- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> ( ( ( a .x. b ) = ( a .x. .0. ) -> b = .0. ) <-> ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
| 63 | 57 62 | sylibd | |- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> ( A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
| 64 | 63 | ralimdvva | |- ( R e. NzRing -> ( A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) -> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
| 65 | isdomn5 | |- ( A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) |
|
| 66 | 64 65 | imbitrrdi | |- ( R e. NzRing -> ( A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) -> A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) ) ) |
| 67 | 66 | imdistani | |- ( ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) -> ( R e. NzRing /\ A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) ) ) |
| 68 | 1 3 2 | isdomn | |- ( R e. Domn <-> ( R e. NzRing /\ A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) ) ) |
| 69 | 67 68 | sylibr | |- ( ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) -> R e. Domn ) |
| 70 | 46 69 | impbii | |- ( R e. Domn <-> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |