This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn . (Contributed by SN, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprdomn.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| Assertion | opprdomnb | ⊢ ( 𝑅 ∈ Domn ↔ 𝑂 ∈ Domn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprdomn.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | 1 | opprnzrb | ⊢ ( 𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing ) |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 1 3 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 5 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) | |
| 7 | 3 5 1 6 | opprmul | ⊢ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) |
| 8 | 7 | eqcomi | ⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) |
| 9 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 10 | 1 9 | oppr0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) |
| 11 | 8 10 | eqeq12i | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) ) |
| 12 | 10 | eqeq2i | ⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) ↔ 𝑥 = ( 0g ‘ 𝑂 ) ) |
| 13 | 10 | eqeq2i | ⊢ ( 𝑦 = ( 0g ‘ 𝑅 ) ↔ 𝑦 = ( 0g ‘ 𝑂 ) ) |
| 14 | 12 13 | orbi12i | ⊢ ( ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ↔ ( 𝑥 = ( 0g ‘ 𝑂 ) ∨ 𝑦 = ( 0g ‘ 𝑂 ) ) ) |
| 15 | orcom | ⊢ ( ( 𝑥 = ( 0g ‘ 𝑂 ) ∨ 𝑦 = ( 0g ‘ 𝑂 ) ) ↔ ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ↔ ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) |
| 17 | 11 16 | imbi12i | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ↔ ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) |
| 18 | 4 17 | raleqbii | ⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) |
| 19 | 4 18 | raleqbii | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) |
| 20 | ralcom | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) | |
| 21 | 19 20 | bitri | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) |
| 22 | 2 21 | anbi12i | ⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) ↔ ( 𝑂 ∈ NzRing ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) ) |
| 23 | 3 5 9 | isdomn | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) ) |
| 24 | eqid | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) | |
| 25 | eqid | ⊢ ( 0g ‘ 𝑂 ) = ( 0g ‘ 𝑂 ) | |
| 26 | 24 6 25 | isdomn | ⊢ ( 𝑂 ∈ Domn ↔ ( 𝑂 ∈ NzRing ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑂 ) ∀ 𝑥 ∈ ( Base ‘ 𝑂 ) ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑂 ) → ( 𝑦 = ( 0g ‘ 𝑂 ) ∨ 𝑥 = ( 0g ‘ 𝑂 ) ) ) ) ) |
| 27 | 22 23 26 | 3bitr4i | ⊢ ( 𝑅 ∈ Domn ↔ 𝑂 ∈ Domn ) |