This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence between the right conjuncts in the right hand sides of isdomn and isdomn2 , in predicate calculus form. (Contributed by SN, 16-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isdomn5 | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2.04 | ⊢ ( ( ¬ 𝑎 = 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ↔ ( ( 𝑎 · 𝑏 ) = 0 → ( ¬ 𝑎 = 0 → 𝑏 = 0 ) ) ) | |
| 2 | df-ne | ⊢ ( 𝑎 ≠ 0 ↔ ¬ 𝑎 = 0 ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑎 ≠ 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ↔ ( ¬ 𝑎 = 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
| 4 | df-or | ⊢ ( ( 𝑎 = 0 ∨ 𝑏 = 0 ) ↔ ( ¬ 𝑎 = 0 → 𝑏 = 0 ) ) | |
| 5 | 4 | imbi2i | ⊢ ( ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ( ( 𝑎 · 𝑏 ) = 0 → ( ¬ 𝑎 = 0 → 𝑏 = 0 ) ) ) |
| 6 | 1 3 5 | 3bitr4ri | ⊢ ( ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ( 𝑎 ≠ 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
| 7 | 6 | 2ralbii | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ≠ 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
| 8 | r19.21v | ⊢ ( ∀ 𝑏 ∈ 𝐵 ( 𝑎 ≠ 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ↔ ( 𝑎 ≠ 0 → ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) | |
| 9 | 8 | ralbii | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ≠ 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ( 𝑎 ≠ 0 → ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
| 10 | raldifsnb | ⊢ ( ∀ 𝑎 ∈ 𝐵 ( 𝑎 ≠ 0 → ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) | |
| 11 | 7 9 10 | 3bitri | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) |