This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring multiplication distributes over subtraction. ( subdi analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringsubdi.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringsubdi.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringsubdi.m | ⊢ − = ( -g ‘ 𝑅 ) | ||
| ringsubdi.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringsubdi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringsubdi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ringsubdi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | ringsubdi | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 − 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) − ( 𝑋 · 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringsubdi.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringsubdi.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringsubdi.m | ⊢ − = ( -g ‘ 𝑅 ) | |
| 4 | ringsubdi.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | ringsubdi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ringsubdi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | ringsubdi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 10 | 1 2 3 9 5 6 7 | rngsubdi | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 − 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) − ( 𝑋 · 𝑍 ) ) ) |