This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domneq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| domneq0.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| domneq0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | domnmuln0 | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domneq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | domneq0.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | domneq0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | an4 | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ) ) | |
| 5 | neanior | ⊢ ( ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ ¬ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) | |
| 6 | 1 2 3 | domneq0 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| 7 | 6 | 3expb | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| 8 | 7 | necon3abid | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) ≠ 0 ↔ ¬ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| 9 | 5 8 | bitr4id | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ ( 𝑋 · 𝑌 ) ≠ 0 ) ) |
| 10 | 9 | biimpd | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) → ( 𝑋 · 𝑌 ) ≠ 0 ) ) |
| 11 | 10 | expimpd | ⊢ ( 𝑅 ∈ Domn → ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) ) |
| 12 | 4 11 | biimtrid | ⊢ ( 𝑅 ∈ Domn → ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) ) |
| 13 | 12 | 3impib | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) |