This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmet3.1 | |- Z = ( ZZ>= ` M ) |
|
| iscmet3.2 | |- J = ( MetOpen ` D ) |
||
| iscmet3.3 | |- ( ph -> M e. ZZ ) |
||
| iscmet3.4 | |- ( ph -> D e. ( Met ` X ) ) |
||
| iscmet3.6 | |- ( ph -> F : Z --> X ) |
||
| iscmet3.9 | |- ( ph -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
||
| iscmet3.10 | |- ( ph -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
||
| Assertion | iscmet3lem1 | |- ( ph -> F e. ( Cau ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet3.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iscmet3.2 | |- J = ( MetOpen ` D ) |
|
| 3 | iscmet3.3 | |- ( ph -> M e. ZZ ) |
|
| 4 | iscmet3.4 | |- ( ph -> D e. ( Met ` X ) ) |
|
| 5 | iscmet3.6 | |- ( ph -> F : Z --> X ) |
|
| 6 | iscmet3.9 | |- ( ph -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
|
| 7 | iscmet3.10 | |- ( ph -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
|
| 8 | 1 | iscmet3lem3 | |- ( ( M e. ZZ /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < r ) |
| 9 | 3 8 | sylan | |- ( ( ph /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < r ) |
| 10 | 1 | r19.2uz | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < r -> E. k e. Z ( ( 1 / 2 ) ^ k ) < r ) |
| 11 | 9 10 | syl | |- ( ( ph /\ r e. RR+ ) -> E. k e. Z ( ( 1 / 2 ) ^ k ) < r ) |
| 12 | fveq2 | |- ( n = k -> ( S ` n ) = ( S ` k ) ) |
|
| 13 | 12 | eleq2d | |- ( n = k -> ( ( F ` k ) e. ( S ` n ) <-> ( F ` k ) e. ( S ` k ) ) ) |
| 14 | 7 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
| 15 | simpl | |- ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> k e. Z ) |
|
| 16 | 15 | adantl | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. Z ) |
| 17 | rsp | |- ( A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) -> ( k e. Z -> A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) ) |
|
| 18 | 14 16 17 | sylc | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
| 19 | 16 1 | eleqtrdi | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ( ZZ>= ` M ) ) |
| 20 | eluzfz2 | |- ( k e. ( ZZ>= ` M ) -> k e. ( M ... k ) ) |
|
| 21 | 19 20 | syl | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ( M ... k ) ) |
| 22 | 13 18 21 | rspcdva | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` k ) e. ( S ` k ) ) |
| 23 | 12 | eleq2d | |- ( n = k -> ( ( F ` j ) e. ( S ` n ) <-> ( F ` j ) e. ( S ` k ) ) ) |
| 24 | oveq2 | |- ( k = j -> ( M ... k ) = ( M ... j ) ) |
|
| 25 | fveq2 | |- ( k = j -> ( F ` k ) = ( F ` j ) ) |
|
| 26 | 25 | eleq1d | |- ( k = j -> ( ( F ` k ) e. ( S ` n ) <-> ( F ` j ) e. ( S ` n ) ) ) |
| 27 | 24 26 | raleqbidv | |- ( k = j -> ( A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) <-> A. n e. ( M ... j ) ( F ` j ) e. ( S ` n ) ) ) |
| 28 | 1 | uztrn2 | |- ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) |
| 29 | 28 | adantl | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> j e. Z ) |
| 30 | 27 14 29 | rspcdva | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. n e. ( M ... j ) ( F ` j ) e. ( S ` n ) ) |
| 31 | simprr | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> j e. ( ZZ>= ` k ) ) |
|
| 32 | elfzuzb | |- ( k e. ( M ... j ) <-> ( k e. ( ZZ>= ` M ) /\ j e. ( ZZ>= ` k ) ) ) |
|
| 33 | 19 31 32 | sylanbrc | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ( M ... j ) ) |
| 34 | 23 30 33 | rspcdva | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` j ) e. ( S ` k ) ) |
| 35 | 6 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
| 36 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 37 | 36 1 | eleq2s | |- ( k e. Z -> k e. ZZ ) |
| 38 | 37 | ad2antrl | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> k e. ZZ ) |
| 39 | rsp | |- ( A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) -> ( k e. ZZ -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) ) |
|
| 40 | 35 38 39 | sylc | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
| 41 | oveq1 | |- ( u = ( F ` k ) -> ( u D v ) = ( ( F ` k ) D v ) ) |
|
| 42 | 41 | breq1d | |- ( u = ( F ` k ) -> ( ( u D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) ) ) |
| 43 | oveq2 | |- ( v = ( F ` j ) -> ( ( F ` k ) D v ) = ( ( F ` k ) D ( F ` j ) ) ) |
|
| 44 | 43 | breq1d | |- ( v = ( F ` j ) -> ( ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) ) ) |
| 45 | 42 44 | rspc2va | |- ( ( ( ( F ` k ) e. ( S ` k ) /\ ( F ` j ) e. ( S ` k ) ) /\ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) -> ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) ) |
| 46 | 22 34 40 45 | syl21anc | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) ) |
| 47 | 4 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> D e. ( Met ` X ) ) |
| 48 | 5 | adantr | |- ( ( ph /\ r e. RR+ ) -> F : Z --> X ) |
| 49 | ffvelcdm | |- ( ( F : Z --> X /\ k e. Z ) -> ( F ` k ) e. X ) |
|
| 50 | 48 15 49 | syl2an | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` k ) e. X ) |
| 51 | ffvelcdm | |- ( ( F : Z --> X /\ j e. Z ) -> ( F ` j ) e. X ) |
|
| 52 | 48 28 51 | syl2an | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( F ` j ) e. X ) |
| 53 | metcl | |- ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` j ) e. X ) -> ( ( F ` k ) D ( F ` j ) ) e. RR ) |
|
| 54 | 47 50 52 53 | syl3anc | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D ( F ` j ) ) e. RR ) |
| 55 | 1rp | |- 1 e. RR+ |
|
| 56 | rphalfcl | |- ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
|
| 57 | 55 56 | ax-mp | |- ( 1 / 2 ) e. RR+ |
| 58 | rpexpcl | |- ( ( ( 1 / 2 ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
|
| 59 | 57 38 58 | sylancr | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 60 | 59 | rpred | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( 1 / 2 ) ^ k ) e. RR ) |
| 61 | rpre | |- ( r e. RR+ -> r e. RR ) |
|
| 62 | 61 | ad2antlr | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> r e. RR ) |
| 63 | lttr | |- ( ( ( ( F ` k ) D ( F ` j ) ) e. RR /\ ( ( 1 / 2 ) ^ k ) e. RR /\ r e. RR ) -> ( ( ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) /\ ( ( 1 / 2 ) ^ k ) < r ) -> ( ( F ` k ) D ( F ` j ) ) < r ) ) |
|
| 64 | 54 60 62 63 | syl3anc | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` k ) D ( F ` j ) ) < ( ( 1 / 2 ) ^ k ) /\ ( ( 1 / 2 ) ^ k ) < r ) -> ( ( F ` k ) D ( F ` j ) ) < r ) ) |
| 65 | 46 64 | mpand | |- ( ( ( ph /\ r e. RR+ ) /\ ( k e. Z /\ j e. ( ZZ>= ` k ) ) ) -> ( ( ( 1 / 2 ) ^ k ) < r -> ( ( F ` k ) D ( F ` j ) ) < r ) ) |
| 66 | 65 | anassrs | |- ( ( ( ( ph /\ r e. RR+ ) /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( 1 / 2 ) ^ k ) < r -> ( ( F ` k ) D ( F ` j ) ) < r ) ) |
| 67 | 66 | ralrimdva | |- ( ( ( ph /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) < r -> A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) ) |
| 68 | 67 | reximdva | |- ( ( ph /\ r e. RR+ ) -> ( E. k e. Z ( ( 1 / 2 ) ^ k ) < r -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) ) |
| 69 | 11 68 | mpd | |- ( ( ph /\ r e. RR+ ) -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) |
| 70 | 69 | ralrimiva | |- ( ph -> A. r e. RR+ E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) |
| 71 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 72 | 4 71 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 73 | eqidd | |- ( ( ph /\ j e. Z ) -> ( F ` j ) = ( F ` j ) ) |
|
| 74 | eqidd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
|
| 75 | 1 72 3 73 74 5 | iscauf | |- ( ph -> ( F e. ( Cau ` D ) <-> A. r e. RR+ E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` j ) ) < r ) ) |
| 76 | 70 75 | mpbird | |- ( ph -> F e. ( Cau ` D ) ) |