This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function in terms of the norm of a normed group. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpds.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| ngpds.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| ngpds.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ngpds.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| Assertion | ngpds | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpds.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 2 | ngpds.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | ngpds.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | ngpds.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) | |
| 6 | 1 3 4 2 5 | isngp2 | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) |
| 7 | 6 | simp3bi | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) |
| 9 | 8 | oveqd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝑁 ∘ − ) 𝐵 ) = ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ) |
| 10 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 11 | 2 3 | grpsubf | ⊢ ( 𝐺 ∈ Grp → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 12 | 10 11 | syl | ⊢ ( 𝐺 ∈ NrmGrp → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 14 | opelxpi | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 15 | 14 | 3adant1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 16 | fvco3 | ⊢ ( ( − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝑁 ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) ) | |
| 17 | 13 15 16 | syl2anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 18 | df-ov | ⊢ ( 𝐴 ( 𝑁 ∘ − ) 𝐵 ) = ( ( 𝑁 ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 19 | df-ov | ⊢ ( 𝐴 − 𝐵 ) = ( − ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 20 | 19 | fveq2i | ⊢ ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) = ( 𝑁 ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 21 | 17 18 20 | 3eqtr4g | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝑁 ∘ − ) 𝐵 ) = ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |
| 22 | ovres | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) | |
| 23 | 22 | 3adant1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 24 | 9 21 23 | 3eqtr3rd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |