This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. Complex version of ipsubdi . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| cphsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| Assertion | cphsubdi | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( -g ‘ ( Scalar ‘ 𝑊 ) ) = ( -g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 7 | 5 1 2 3 6 | ipsubdi | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
| 8 | 4 7 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
| 9 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ ℂMod ) |
| 11 | 4 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ PreHil ) |
| 12 | simpr1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) | |
| 13 | simpr2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) | |
| 14 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 15 | 5 1 2 14 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 16 | 11 12 13 15 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 17 | simpr3 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) | |
| 18 | 5 1 2 14 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 19 | 11 12 17 18 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 20 | 5 14 | clmsub | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
| 21 | 10 16 19 20 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
| 22 | 8 21 | eqtr4d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝐶 ) ) ) |