This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inner product is a member of the complex numbers. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmsq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| nmsq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| Assertion | cphipcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | nmsq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 5 | 3 4 | cphsubrg | ⊢ ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) ) |
| 6 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 7 | 6 | subrgss | ⊢ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ ) |
| 8 | 5 7 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ ) |
| 10 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 11 | 3 2 1 4 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 12 | 10 11 | syl3an1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 13 | 9 12 | sseldd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |