This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . By ipasslem5 , F is 0 for all QQ ; since it is continuous and QQ is dense in RR by qdensere2 , we conclude F is 0 for all RR . (Contributed by NM, 24-Aug-2007) (Revised by Mario Carneiro, 6-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 | ||
| ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 | ||
| ipasslem7.f | ⊢ 𝐹 = ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) | ||
| Assertion | ipasslem8 | ⊢ 𝐹 : ℝ ⟶ { 0 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 | |
| 7 | ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 | |
| 8 | ipasslem7.f | ⊢ 𝐹 = ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) | |
| 9 | 0cn | ⊢ 0 ∈ ℂ | |
| 10 | qre | ⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) | |
| 11 | oveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 𝑆 𝐴 ) = ( 𝑥 𝑆 𝐴 ) ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 13 | oveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) | |
| 14 | 12 13 | oveq12d | ⊢ ( 𝑤 = 𝑥 → ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) = ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 15 | ovex | ⊢ ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) ∈ V | |
| 16 | 14 8 15 | fvmpt | ⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 17 | 10 16 | syl | ⊢ ( 𝑥 ∈ ℚ → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 18 | qcn | ⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℂ ) | |
| 19 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 20 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ) |
| 21 | 19 20 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ) |
| 22 | 18 21 | sylan | ⊢ ( ( 𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ) |
| 23 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 24 | 19 7 23 | mp3an13 | ⊢ ( ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 → ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 25 | 22 24 | syl | ⊢ ( ( 𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 26 | 1 2 3 4 5 7 | ipasslem5 | ⊢ ( ( 𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 27 | 25 26 | subeq0bd | ⊢ ( ( 𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) = 0 ) |
| 28 | 6 27 | mpan2 | ⊢ ( 𝑥 ∈ ℚ → ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) = 0 ) |
| 29 | 17 28 | eqtrd | ⊢ ( 𝑥 ∈ ℚ → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 30 | 29 | rgen | ⊢ ∀ 𝑥 ∈ ℚ ( 𝐹 ‘ 𝑥 ) = 0 |
| 31 | 8 | funmpt2 | ⊢ Fun 𝐹 |
| 32 | qssre | ⊢ ℚ ⊆ ℝ | |
| 33 | ovex | ⊢ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ∈ V | |
| 34 | 33 8 | dmmpti | ⊢ dom 𝐹 = ℝ |
| 35 | 32 34 | sseqtrri | ⊢ ℚ ⊆ dom 𝐹 |
| 36 | funconstss | ⊢ ( ( Fun 𝐹 ∧ ℚ ⊆ dom 𝐹 ) → ( ∀ 𝑥 ∈ ℚ ( 𝐹 ‘ 𝑥 ) = 0 ↔ ℚ ⊆ ( ◡ 𝐹 “ { 0 } ) ) ) | |
| 37 | 31 35 36 | mp2an | ⊢ ( ∀ 𝑥 ∈ ℚ ( 𝐹 ‘ 𝑥 ) = 0 ↔ ℚ ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
| 38 | 30 37 | mpbi | ⊢ ℚ ⊆ ( ◡ 𝐹 “ { 0 } ) |
| 39 | qdensere | ⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ | |
| 40 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 41 | 40 | cnfldhaus | ⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
| 42 | haust1 | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Haus → ( TopOpen ‘ ℂfld ) ∈ Fre ) | |
| 43 | 41 42 | ax-mp | ⊢ ( TopOpen ‘ ℂfld ) ∈ Fre |
| 44 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 45 | 1 2 3 4 5 6 7 8 44 40 | ipasslem7 | ⊢ 𝐹 ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 46 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 47 | 40 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 48 | 47 | toponunii | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 49 | 46 48 | dnsconst | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ∈ Fre ∧ 𝐹 ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) ∧ ( 0 ∈ ℂ ∧ ℚ ⊆ ( ◡ 𝐹 “ { 0 } ) ∧ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ ) ) → 𝐹 : ℝ ⟶ { 0 } ) |
| 50 | 43 45 49 | mpanl12 | ⊢ ( ( 0 ∈ ℂ ∧ ℚ ⊆ ( ◡ 𝐹 “ { 0 } ) ∧ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ ) → 𝐹 : ℝ ⟶ { 0 } ) |
| 51 | 9 38 39 50 | mp3an | ⊢ 𝐹 : ℝ ⟶ { 0 } |