This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Conclude from ipasslem8 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ipasslem9.a | ⊢ 𝐴 ∈ 𝑋 | ||
| ipasslem9.b | ⊢ 𝐵 ∈ 𝑋 | ||
| Assertion | ipasslem9 | ⊢ ( 𝐶 ∈ ℝ → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ipasslem9.a | ⊢ 𝐴 ∈ 𝑋 | |
| 7 | ipasslem9.b | ⊢ 𝐵 ∈ 𝑋 | |
| 8 | oveq1 | ⊢ ( 𝑤 = 𝐶 → ( 𝑤 𝑆 𝐴 ) = ( 𝐶 𝑆 𝐴 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑤 = 𝐶 → ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 10 | oveq1 | ⊢ ( 𝑤 = 𝐶 → ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) | |
| 11 | 9 10 | oveq12d | ⊢ ( 𝑤 = 𝐶 → ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) = ( ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 12 | eqid | ⊢ ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) = ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) | |
| 13 | ovex | ⊢ ( ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ∈ V | |
| 14 | 11 12 13 | fvmpt | ⊢ ( 𝐶 ∈ ℝ → ( ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) ‘ 𝐶 ) = ( ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 15 | 1 2 3 4 5 6 7 12 | ipasslem8 | ⊢ ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) : ℝ ⟶ { 0 } |
| 16 | fvconst | ⊢ ( ( ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) : ℝ ⟶ { 0 } ∧ 𝐶 ∈ ℝ ) → ( ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) ‘ 𝐶 ) = 0 ) | |
| 17 | 15 16 | mpan | ⊢ ( 𝐶 ∈ ℝ → ( ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) ‘ 𝐶 ) = 0 ) |
| 18 | 14 17 | eqtr3d | ⊢ ( 𝐶 ∈ ℝ → ( ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) = 0 ) |
| 19 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 20 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 21 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 𝑆 𝐴 ) ∈ 𝑋 ) |
| 22 | 20 6 21 | mp3an13 | ⊢ ( 𝐶 ∈ ℂ → ( 𝐶 𝑆 𝐴 ) ∈ 𝑋 ) |
| 23 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 24 | 20 7 23 | mp3an13 | ⊢ ( ( 𝐶 𝑆 𝐴 ) ∈ 𝑋 → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 25 | 22 24 | syl | ⊢ ( 𝐶 ∈ ℂ → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 26 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 27 | 20 6 7 26 | mp3an | ⊢ ( 𝐴 𝑃 𝐵 ) ∈ ℂ |
| 28 | mulcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) → ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ∈ ℂ ) | |
| 29 | 27 28 | mpan2 | ⊢ ( 𝐶 ∈ ℂ → ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ∈ ℂ ) |
| 30 | 25 29 | subeq0ad | ⊢ ( 𝐶 ∈ ℂ → ( ( ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) = 0 ↔ ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 31 | 19 30 | syl | ⊢ ( 𝐶 ∈ ℝ → ( ( ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) = 0 ↔ ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 32 | 18 31 | mpbid | ⊢ ( 𝐶 ∈ ℝ → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) |