This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. (Contributed by NM, 25-Aug-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| Assertion | ipassi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝐵 ) 𝑃 𝐶 ) = ( 𝐴 · ( 𝐵 𝑃 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( 𝐴 𝑆 𝐵 ) = ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( ( 𝐴 𝑆 𝐵 ) 𝑃 𝐶 ) = ( ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) 𝑃 𝐶 ) ) |
| 8 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( 𝐵 𝑃 𝐶 ) = ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐶 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( 𝐴 · ( 𝐵 𝑃 𝐶 ) ) = ( 𝐴 · ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐶 ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( ( ( 𝐴 𝑆 𝐵 ) 𝑃 𝐶 ) = ( 𝐴 · ( 𝐵 𝑃 𝐶 ) ) ↔ ( ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) 𝑃 𝐶 ) = ( 𝐴 · ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐶 ) ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( ( 𝐴 ∈ ℂ → ( ( 𝐴 𝑆 𝐵 ) 𝑃 𝐶 ) = ( 𝐴 · ( 𝐵 𝑃 𝐶 ) ) ) ↔ ( 𝐴 ∈ ℂ → ( ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) 𝑃 𝐶 ) = ( 𝐴 · ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐶 ) ) ) ) ) |
| 12 | oveq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) → ( ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) 𝑃 𝐶 ) = ( ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) 𝑃 if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) ) ) | |
| 13 | oveq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) → ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐶 ) = ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) → ( 𝐴 · ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐶 ) ) = ( 𝐴 · ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝐶 = if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) → ( ( ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) 𝑃 𝐶 ) = ( 𝐴 · ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐶 ) ) ↔ ( ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) 𝑃 if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) ) = ( 𝐴 · ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) ) ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) → ( ( 𝐴 ∈ ℂ → ( ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) 𝑃 𝐶 ) = ( 𝐴 · ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐶 ) ) ) ↔ ( 𝐴 ∈ ℂ → ( ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) 𝑃 if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) ) = ( 𝐴 · ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) ) ) ) ) ) |
| 17 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 18 | 1 17 5 | elimph | ⊢ if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ∈ 𝑋 |
| 19 | 1 17 5 | elimph | ⊢ if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) ∈ 𝑋 |
| 20 | 1 2 3 4 5 18 19 | ipasslem11 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 𝑆 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) 𝑃 if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) ) = ( 𝐴 · ( if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) 𝑃 if ( 𝐶 ∈ 𝑋 , 𝐶 , ( 0vec ‘ 𝑈 ) ) ) ) ) |
| 21 | 11 16 20 | dedth2h | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ ℂ → ( ( 𝐴 𝑆 𝐵 ) 𝑃 𝐶 ) = ( 𝐴 · ( 𝐵 𝑃 𝐶 ) ) ) ) |
| 22 | 21 | com12 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝐵 ) 𝑃 𝐶 ) = ( 𝐴 · ( 𝐵 𝑃 𝐶 ) ) ) ) |
| 23 | 22 | 3impib | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝐵 ) 𝑃 𝐶 ) = ( 𝐴 · ( 𝐵 𝑃 𝐶 ) ) ) |