This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 | ||
| Assertion | ipasslem5 | ⊢ ( ( 𝐶 ∈ ℚ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 | |
| 7 | elq | ⊢ ( 𝐶 ∈ ℚ ↔ ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℕ 𝐶 = ( 𝑗 / 𝑘 ) ) | |
| 8 | zcn | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℂ ) | |
| 9 | nnrecre | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) | |
| 10 | 9 | recnd | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℂ ) |
| 11 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 12 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 13 | 11 6 12 | mp3an13 | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 14 | mulass | ⊢ ( ( 𝑗 ∈ ℂ ∧ ( 1 / 𝑘 ) ∈ ℂ ∧ ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) → ( ( 𝑗 · ( 1 / 𝑘 ) ) · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑗 · ( ( 1 / 𝑘 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) | |
| 15 | 8 10 13 14 | syl3an | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑗 · ( 1 / 𝑘 ) ) · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑗 · ( ( 1 / 𝑘 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 16 | 8 | adantr | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → 𝑗 ∈ ℂ ) |
| 17 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 19 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
| 21 | 16 18 20 | divrecd | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( 𝑗 / 𝑘 ) = ( 𝑗 · ( 1 / 𝑘 ) ) ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑗 / 𝑘 ) = ( 𝑗 · ( 1 / 𝑘 ) ) ) |
| 23 | 22 | oveq1d | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑗 / 𝑘 ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑗 · ( 1 / 𝑘 ) ) · ( 𝐴 𝑃 𝐵 ) ) ) |
| 24 | 22 | oveq1d | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑗 / 𝑘 ) 𝑆 𝐴 ) = ( ( 𝑗 · ( 1 / 𝑘 ) ) 𝑆 𝐴 ) ) |
| 25 | id | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋 ) | |
| 26 | 1 3 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑗 ∈ ℂ ∧ ( 1 / 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑗 · ( 1 / 𝑘 ) ) 𝑆 𝐴 ) = ( 𝑗 𝑆 ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ) ) |
| 27 | 11 26 | mpan | ⊢ ( ( 𝑗 ∈ ℂ ∧ ( 1 / 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑗 · ( 1 / 𝑘 ) ) 𝑆 𝐴 ) = ( 𝑗 𝑆 ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ) ) |
| 28 | 8 10 25 27 | syl3an | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑗 · ( 1 / 𝑘 ) ) 𝑆 𝐴 ) = ( 𝑗 𝑆 ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ) ) |
| 29 | 24 28 | eqtrd | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑗 / 𝑘 ) 𝑆 𝐴 ) = ( 𝑗 𝑆 ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ) ) |
| 30 | 29 | oveq1d | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑗 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑗 𝑆 ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ) 𝑃 𝐵 ) ) |
| 31 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 / 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ∈ 𝑋 ) |
| 32 | 11 31 | mp3an1 | ⊢ ( ( ( 1 / 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ∈ 𝑋 ) |
| 33 | 10 32 | sylan | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ∈ 𝑋 ) |
| 34 | 1 2 3 4 5 6 | ipasslem3 | ⊢ ( ( 𝑗 ∈ ℤ ∧ ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ∈ 𝑋 ) → ( ( 𝑗 𝑆 ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( 𝑗 · ( ( ( 1 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 35 | 33 34 | sylan2 | ⊢ ( ( 𝑗 ∈ ℤ ∧ ( 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑗 𝑆 ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( 𝑗 · ( ( ( 1 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 36 | 35 | 3impb | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑗 𝑆 ( ( 1 / 𝑘 ) 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( 𝑗 · ( ( ( 1 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 37 | 1 2 3 4 5 6 | ipasslem4 | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 1 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 1 / 𝑘 ) · ( 𝐴 𝑃 𝐵 ) ) ) |
| 38 | 37 | 3adant1 | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 1 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 1 / 𝑘 ) · ( 𝐴 𝑃 𝐵 ) ) ) |
| 39 | 38 | oveq2d | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑗 · ( ( ( 1 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) = ( 𝑗 · ( ( 1 / 𝑘 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 40 | 30 36 39 | 3eqtrd | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑗 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( ( 1 / 𝑘 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 41 | 15 23 40 | 3eqtr4rd | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑗 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑗 / 𝑘 ) · ( 𝐴 𝑃 𝐵 ) ) ) |
| 42 | oveq1 | ⊢ ( 𝐶 = ( 𝑗 / 𝑘 ) → ( 𝐶 𝑆 𝐴 ) = ( ( 𝑗 / 𝑘 ) 𝑆 𝐴 ) ) | |
| 43 | 42 | oveq1d | ⊢ ( 𝐶 = ( 𝑗 / 𝑘 ) → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑗 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 44 | oveq1 | ⊢ ( 𝐶 = ( 𝑗 / 𝑘 ) → ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑗 / 𝑘 ) · ( 𝐴 𝑃 𝐵 ) ) ) | |
| 45 | 43 44 | eqeq12d | ⊢ ( 𝐶 = ( 𝑗 / 𝑘 ) → ( ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ↔ ( ( ( 𝑗 / 𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑗 / 𝑘 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 46 | 41 45 | syl5ibrcom | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 = ( 𝑗 / 𝑘 ) → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 47 | 46 | 3expia | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ∈ 𝑋 → ( 𝐶 = ( 𝑗 / 𝑘 ) → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 48 | 47 | com23 | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( 𝐶 = ( 𝑗 / 𝑘 ) → ( 𝐴 ∈ 𝑋 → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 49 | 48 | rexlimivv | ⊢ ( ∃ 𝑗 ∈ ℤ ∃ 𝑘 ∈ ℕ 𝐶 = ( 𝑗 / 𝑘 ) → ( 𝐴 ∈ 𝑋 → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 50 | 7 49 | sylbi | ⊢ ( 𝐶 ∈ ℚ → ( 𝐴 ∈ 𝑋 → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 51 | 50 | imp | ⊢ ( ( 𝐶 ∈ ℚ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) |