This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: QQ is dense in the standard topology on RR . (Contributed by NM, 1-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qdensere | ⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 2 | qssre | ⊢ ℚ ⊆ ℝ | |
| 3 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 4 | 3 | clsss3 | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ℚ ⊆ ℝ ) → ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) ⊆ ℝ ) |
| 5 | 1 2 4 | mp2an | ⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) ⊆ ℝ |
| 6 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 7 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 8 | ovelrn | ⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝑦 ∈ ran (,) ↔ ∃ 𝑧 ∈ ℝ* ∃ 𝑤 ∈ ℝ* 𝑦 = ( 𝑧 (,) 𝑤 ) ) ) | |
| 9 | 6 7 8 | mp2b | ⊢ ( 𝑦 ∈ ran (,) ↔ ∃ 𝑧 ∈ ℝ* ∃ 𝑤 ∈ ℝ* 𝑦 = ( 𝑧 (,) 𝑤 ) ) |
| 10 | elioo3g | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ↔ ( ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑧 < 𝑥 ∧ 𝑥 < 𝑤 ) ) ) | |
| 11 | 10 | simplbi | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ) |
| 12 | 11 | simp1d | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑧 ∈ ℝ* ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑧 ∈ ℝ* ) |
| 14 | 11 | simp2d | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑤 ∈ ℝ* ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑤 ∈ ℝ* ) |
| 16 | qre | ⊢ ( 𝑦 ∈ ℚ → 𝑦 ∈ ℝ ) | |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑦 ∈ ℝ ) |
| 18 | 17 | rexrd | ⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑦 ∈ ℝ* ) |
| 19 | 13 15 18 | 3jca | ⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 20 | simpr | ⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) | |
| 21 | elioo3g | ⊢ ( 𝑦 ∈ ( 𝑧 (,) 𝑤 ) ↔ ( ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) ) | |
| 22 | 19 20 21 | sylanbrc | ⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑦 ∈ ( 𝑧 (,) 𝑤 ) ) |
| 23 | simplr | ⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑦 ∈ ℚ ) | |
| 24 | inelcm | ⊢ ( ( 𝑦 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) → ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ≠ ∅ ) | |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ≠ ∅ ) |
| 26 | 11 | simp3d | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑥 ∈ ℝ* ) |
| 27 | eliooord | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → ( 𝑧 < 𝑥 ∧ 𝑥 < 𝑤 ) ) | |
| 28 | 27 | simpld | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑧 < 𝑥 ) |
| 29 | 27 | simprd | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑥 < 𝑤 ) |
| 30 | 12 26 14 28 29 | xrlttrd | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑧 < 𝑤 ) |
| 31 | qbtwnxr | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ 𝑧 < 𝑤 ) → ∃ 𝑦 ∈ ℚ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) | |
| 32 | 12 14 30 31 | syl3anc | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → ∃ 𝑦 ∈ ℚ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) |
| 33 | 25 32 | r19.29a | ⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ≠ ∅ ) |
| 34 | 33 | a1i | ⊢ ( 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ≠ ∅ ) ) |
| 35 | eleq2 | ⊢ ( 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ) ) | |
| 36 | ineq1 | ⊢ ( 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑦 ∩ ℚ ) = ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ) | |
| 37 | 36 | neeq1d | ⊢ ( 𝑦 = ( 𝑧 (,) 𝑤 ) → ( ( 𝑦 ∩ ℚ ) ≠ ∅ ↔ ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ≠ ∅ ) ) |
| 38 | 34 35 37 | 3imtr4d | ⊢ ( 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) ) |
| 39 | 38 | rexlimivw | ⊢ ( ∃ 𝑤 ∈ ℝ* 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) ) |
| 40 | 39 | rexlimivw | ⊢ ( ∃ 𝑧 ∈ ℝ* ∃ 𝑤 ∈ ℝ* 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) ) |
| 41 | 9 40 | sylbi | ⊢ ( 𝑦 ∈ ran (,) → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) ) |
| 42 | 41 | rgen | ⊢ ∀ 𝑦 ∈ ran (,) ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) |
| 43 | eqidd | ⊢ ( 𝑥 ∈ ℝ → ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) ) | |
| 44 | 3 | a1i | ⊢ ( 𝑥 ∈ ℝ → ℝ = ∪ ( topGen ‘ ran (,) ) ) |
| 45 | retopbas | ⊢ ran (,) ∈ TopBases | |
| 46 | 45 | a1i | ⊢ ( 𝑥 ∈ ℝ → ran (,) ∈ TopBases ) |
| 47 | 2 | a1i | ⊢ ( 𝑥 ∈ ℝ → ℚ ⊆ ℝ ) |
| 48 | id | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ ) | |
| 49 | 43 44 46 47 48 | elcls3 | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) ↔ ∀ 𝑦 ∈ ran (,) ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) ) ) |
| 50 | 42 49 | mpbiri | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) ) |
| 51 | 50 | ssriv | ⊢ ℝ ⊆ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) |
| 52 | 5 51 | eqssi | ⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ |