This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funconstss | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ↔ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ) ) | |
| 2 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 3 | 2 | elsn | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ↔ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 5 | 1 4 | bitr2di | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ↔ ( 𝐹 “ 𝐴 ) ⊆ { 𝐵 } ) ) |
| 6 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ { 𝐵 } ↔ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) | |
| 7 | 5 6 | bitrd | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ↔ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) |