This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a continuous mapping to a T_1 space is constant on a dense subset, it is constant on the entire space. Note that ( ( clsJ )A ) = X means " A is dense in X " and A C_ (`' F " { P } ) means " F is constant on A ` " (see funconstss ). (Contributed by NM, 15-Mar-2007) (Proof shortened by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnsconst.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| dnsconst.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | dnsconst | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐹 : 𝑋 ⟶ { 𝑃 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnsconst.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | dnsconst.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | simplr | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 4 | 1 2 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 5 | ffn | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝐹 Fn 𝑋 ) | |
| 6 | 3 4 5 | 3syl | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐹 Fn 𝑋 ) |
| 7 | simpr3 | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) | |
| 8 | simpll | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐾 ∈ Fre ) | |
| 9 | simpr1 | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝑃 ∈ 𝑌 ) | |
| 10 | 2 | t1sncld | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝑃 ∈ 𝑌 ) → { 𝑃 } ∈ ( Clsd ‘ 𝐾 ) ) |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → { 𝑃 } ∈ ( Clsd ‘ 𝐾 ) ) |
| 12 | cnclima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ { 𝑃 } ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ { 𝑃 } ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 13 | 3 11 12 | syl2anc | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ◡ 𝐹 “ { 𝑃 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 14 | simpr2 | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) | |
| 15 | 1 | clsss2 | ⊢ ( ( ( ◡ 𝐹 “ { 𝑃 } ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) |
| 17 | 7 16 | eqsstrrd | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝑋 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) |
| 18 | fconst3 | ⊢ ( 𝐹 : 𝑋 ⟶ { 𝑃 } ↔ ( 𝐹 Fn 𝑋 ∧ 𝑋 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ) ) | |
| 19 | 6 17 18 | sylanbrc | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝑃 } ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐹 : 𝑋 ⟶ { 𝑃 } ) |